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A representation theorem for the entropy functional of a system of an arbitrary but finite number of
particles is proved. This theorem is a generalization of the main result of a previous paper of ours [J.
Math. Phys. 16, 1453 (1975)], which gives a characterization of the entropy functional on the set of all

probability densities f on R, s.t. flogf is integrable. As may be expected when n is a random variable,

the expression for entropy consists of two parts; one which arises from the ignorance about n and another
which is the average, over n, of the conditional entropy given the number of particles. As in the above-
mentioned paper, the expression includes the term corresponding to chemical reactions (with n replaced by
the average number of particles) and the continuous analog of the Hartley entropy. It is conjectured that

this last term might be of some significance in physics.

1. INTRODUCTION

In a previous paper (Ref. 1), a representation theo-
rem was proved for entropy functionals on the set of all
probability densities f on R, such that f log f is inte-
grable. In statistical mechanics, where the notion of
entropy plays a central role, » turns out to be the same,
except for a factor, as the number of particles in a
gas. Since the exact number of particles in a gas is
never known it is necessary, for the theorem to be use-
ful in statistical mechanics, to remove the restriction
that » be known precisely. This corresponds to consid-
ering the so-called grand canonical system or ensem-
ble, which is what we do in the present paper. However,
for the sake of simplicity, we restrict ourselves to the
case when #n is arbitrary but finite., The extension to the
case when »n could be infinite is straightforward and
purely technical and, we believe, does not add anything
new to the basic representation theorem,

As may be expected when n varies, the expression
for entropy consists of two parts: One which arises from
the ignorance about # and another which is an average,
over n, of the conditional entropy given the number of
particles. As in Ref. 1, the representation includes a
term which corresponds to chemical reactions~with n
replaced by the average number of particles—and the
continuous analog of the Hartley entropy, which we be-
lieve has some physical significance. More precisely,
let f,, denote the conditional probability density of the
system given that there are n particles. Then, the en-
tropy functional ¢, has the representation

q’l({pnfmn:o: 1’2) v '})
=-a2p, _[‘RS £, logf,du +b§pnn

+c; b, log uw,")—d;:()p,,logp,,, (1)

where u denotes the Lebesque measure on R, (n>0),
A, ={x€R, 1 f(x) >0} ¥ >0, and a,b,c,d are real
numbers, with g,c,d > 0; for each #, p, is the probability
that there are » particles and x, is a six-dimensional
vector denoting the position and momenta of the nth
particle. If p,=1 for some » and zero for all other val-
ues, the representation (1) reduces to that given in Ref.
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1, namely

‘I’x(fn)z‘“f%nfnmgfnd“ +bn +clogu(Af") 2)

for the corresponding canonical system.

The method we adopt is similar to the one in Ref. 1.
In order to obtain the representation for the entropy of a
single gas, we consider a mixture of two gases and im-~
pose the physically meaningful condition that the entropy
of the mixture be no greater than the sum of the entro-
pies of the components (subadditivity), with equality
holding if the components are stochastically independent
(additivity). Generalizing the notion that entropy should
not depend on the choice of the coordinate system,
we require that it be invariant under the isometries
induced on the set of probability densities by invertible,
measure preserving transformations from R,, to itseif
for each n, Finally, we impose some simple regularity
conditions,

2. PRELIMINARIES

Let N denote the set of all positive integers. Let the
two gases in the mixture be labeled 0 and 1 respectively
and, Vre N, let{,=00r1V¥ is.t. 1<is<n. The value
of /, identifies the component to which the ith particle
belongs. For each #n, let B, denote the o-algebra of
Borel sets in the Euclidean space R, and let u, be the
Lebesque measure” on R,. The state of the system will
be described by a sequence of functions
{0,001, %oy . ooy XLy bay - o o 41, )}—2x, denotes a six-dimen-
sional vector specifying the position and momenta of the
ith particle—s.t. ¢, € L,(Rg,, Bg, ther)y ¢,2 0, and

b0+ 27
L2 S I P )

all possible
strings of 05 and 15

™

fosn GulX1y Xy e oy Xy taybay e st)dx - -dx, =1,
(3)

¢, is the probability that there are no particles. (When
the number of particles is zero, we shall not distinguish
between the mixture and its components. ) Since the
order in which the particles are counted does not
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matter, ¢, must be symmetric in each couple (x,,,):
Dn(Xg s Xgys ooy Xe s lyslagyevosly,)

== (z)n(xl)xz’ LI ] Xn, /19 [23 @0y tn)’
where (7, 7, ..., m,) is any permuation of (1,2, ...,n).
This symmetry simplifies the description somewhat.
Introduce the sequence of functions 3, , defined by

h ti mes n-h ti mes

n
Yo = b5 zpnvh:(h><b"(x1,x2,o..,xn, 0,0,...,0,1,1,..,,1).

Then (3) becomes

«© ld
¥ +2 Z -fnen Yo 1(Xry v ey XA, dXy -+ ~dx, =1,

We define the marginal of type 0 of ¥, , by

Iy, Xay ooy X,) .
=y 1Ky Xay o vy X)) F 121 ‘[Rm Dot i (Kps v e vy Xy
£y baye ooy EddEdE, - - dEy,
and the marginal of type 1 of y, , by
g, Xy, e, X)

a0

NEALDY ‘/.Rei Drei, {15 L2y ooy &y

= d)k,o(xlyle e i
=

XisXgy oo .,xk)d£1d£2"'d£i.

Let 7y, =9, and, for » or s+0, let

7=
Relres)

pozfo:g:ﬁ Toss qOZEO:Z:I)TTrO’
” (4)

po=[_ Flxy..o,x)dx, - edx, =2 m, (reN),
Rey §=0

w»ws,r(xl’ s ,xrwc)dxl ot .dxr’.s!

ay= [ Bl ...,x)dxyedx, =0, 1,0 (s€N).
Res =0

Then 7, is the joint probability that there are » parti-
cles of type 0 and s particles of type 1 in the mixture,
b, is the probability that there are » particles of type 0
in the mixture, irrespective of how many particles
there are of type 1; similarly for ¢,. The two gases in
the mixture are stochastically independent if and only
if

$o="Do0
. Xh)«zfn—h(x}ul) L a-\’»,)

Z‘()nh(xl, Xoyunn ,X,,) :fh(xu ..

for all {x,,%,,...,%x,)€Ry,, €N, and 2=0,1,2,...,n.
Finally, define the functions f,, g, by

fo=go=1,

and
pr;fr(x].’xZ’ 20 ’x-r) :fr(xl’XZJ A ’xr))
(X1, Xgy + + +» X,) € Ry

(5)

qsgs(xl:x27 e ,XS):ES(XU Xas oo ’xs),

(X1, Xg5 000y X ) E Rgey 7y SEN.

J, is the conditional probability density which describes
the state of the gas of type 0, given that there are »
particles of that type in the mixture; similarly for g,.
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Let
w® ={p,,2=0,1,2,...} wuec N:f, f,108f1, g1
gplogg, € Li(Rgy Beny ey for all ki s, t,
1<h<n; ¢,=0 for sufficiently large n}
and

w® ={F=p,f,, 1=0,1,2,...1}, f,p, defined as

in Eqs. (4) and (5); 7, =0 for » sufficiently
large}.

Let W% denote the set of all sequences of simple func-
tions in W®, and W™’ the corresponding set for W',
Denoting the entropy functionals of the mixture and a
component, respectively, by ®,: W'*’—R and &, : W'
~R, we shall impose the following conditions:

1) &,({o, D= d,({7,D) +¢,({g,) (subadditivity).
(2) If {¢,} is s.t. &= poq,, and

d)nh('\'l’ ""27 e xﬂ) :fh(xl) '\'23 ey Xn) 4En—h('\'h+1’ vy Xn)

for all (x, %, ...,%,)E R, 7€ N, and h=0,1,2,, ..,

then
&, ({o, D=7, +o,({g,) (additivity).

(3) If, for a given n and h = n, suppy,,= A, .,
=suppi, ,.,=A,_, . (Suppf means the support of f),

1
barn= Thnn 7
§ " U'Gn(Ah.n-h) Ah,n-h,
’ 1 \
T e —
n,m-h n-h,h ch(An-h,h) ‘A"‘h h’

where |, stands for the characteristic function of the
set A, then the interchange of i, and ¥, ,_, does not
affect &,.

{4) For each n€ N, let T, be an invertible measure-
preserving transformation from R, to itself. Let UTn
be the isometry induced by T, on L {(R,,, Bg., Lg,). Then

&,({U; ¢, =2, (invariance).

(5) For n=0,1,2,-+-, let {Si,m i€ N} be a sequence
of nonnegative simple functions s.t. s; 4/, a.e., with
Jlfn’ " :0,1, o '}‘C' W(l)' Then

S -
o 2 —~ &, ({7
1{'*'i,0+2:=1|l5i,k“1} 1({/"})

(6) Given the sequence {f,} with 7, =(1-q}f, foa
=qf, .., g< [0,1], for some r& N with f, =0 for y n# v
or » +1, the function ¢ — ®,({f,}) is right-continuous at
0.

as j — oo,

3. REPRESENTATION THEOREM

We are now ready to state and prove the main result
of this paper.

Theovem: If &, :W? - R and &, * W’ ~ R have prop-
erties (1)—(6), then &, has the presentation given by
Eq. 1.

In order to prove this theorem, we shall need the
following lemma, which is essentially a restatement of
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the main result of Ref. 1:

Lemma 1: Let W2 C W denote the set of those
sequences {¢,} for which §,,, ,=0 V¥ (k,%)# (,s) for
some ¥,s € N, and let W3 denote the set of their margi-
nals. Then properties (1), (2), (4), and (6), as applied
to the restrictions of &, and &,, respectively, to W&’
and W, become identical with properties (1)—(4) of
the representation theorem of Ref. 1. The latter there-
fore yields

o, (f,)= —afgerf, logf,du +br +cloguld, ),

where we have identified the sequence {f,}s.t. f,=0 V¥
n# v with f,. Here a,b,c are real numbers, and a,c> 0.

Lemma 2: Let {p,s,}€ WP, where, for each nc N
s :m"; n ,
S M(A,,i) a,;

with ¢, > 0 for each i, m,e N, $7q, =1, and A,;NA,,

=¢wi*j, LetA ~U”"’1A Then
l(J{P,ﬁn})——an{{ q",log u(A p +b 2, b,
+6§Pnlogu(A) de logp,,, (6)

where a,b,c,d are real numbers, and a,c,d > 0.

Proof: Let ne N and let {p, 1.}, {g,¢,}e W, Letg,
=0, r#n, u(suppf,) >0, and suppf, = suppg,. Consider
their joint sequence {z,bm',}c W defined by

wrws,r(xl’ x2} 1083 xr*s)

=PGS0y Kay e a y X )2 (Kprs oo v 5 Xp0g)s
¥ (g, %oy e vy %, ) € Reyg)e
Construct the sequence {J,, ,}€ W by setting
Uosrr = Vpas, v

v (v, 8)# (n,n),

w;n,n(xl’ x‘21 LI ] x2n)

:/)n gn(xl’xZ’ * e wa)‘fn(xnol’ xn+27 ey xZn)

VX, %,...,%,)ER,, .

Then, because of property (4), we have

{ r,g r})‘ 2({d)ru r}

[Since ¢,., and ¢,., , differ only by a factor, we shall
denote the entropy functional by either & ({(bm,r}) or

&,({¢.,, 7}). | Using this along with properties (1) and
(2), we get

q’l({prfr}) +q)1({qrgr}):¢2({¢r+s,r})
:(I’Z({lp:(4s,r}) = CI) 1({pvfr*}) +®1({hr}))

where f* =f, and h, =0 ¥ v+##», and f*=g,, k,=p,f,
+(1 ~p,)g,. Hence, by Lemma 1, we have

@, ({p,r,)-2,0p, 5D
<=~a [, [ty +(1=p)g, lloglp,f, +(1 =)z 1du

+a f’?a g,logg. du.
Interchanging f, and g, (but keeping everything else the
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same), we obtain
o,({p, 1D -2&.Up, 1D
<= [y [oag, + (U =p)fil08lp, g, + (L =p,)f,]du

*a [, f.logf,du.

Hence
-a [, filoghduta [o [png, +(L-p)1]

xloglp, 2, +(1 =p,)f,]du
< q)l({prfr}) - (I)l({prfr*})
<-af [y + (L =p,) g 0glp, , +(1 =p,)g ldus

+a fﬂsng" logg, d .

Now let f, and g, be simple functions with the same
support
m,, '
-3 qni
&n f‘ u(B,,) 5,
where ¢, >0 Vi s.t. lsismn, q,;>0Vvjs,t.1sj
s m

?

q’ll
b L’u(A B

-

*
n?

&lqnt 2—1 qn] ’ iL:JlAn!':ngl an:
and
A, NA  =@=B,,NB,; Yi*j,
Then the above inequalities yield
q idg 1-p.)g
_ 1 ni +a pnqnj ( nldni
“2 tilog oty a2 7 [u(B",) A
an,: (1 P )qni]
X .NB .)lo AL
wd. N5, g[u(B,,,-) (A,
<&,({p, 5,0 -2,({p. /D
m, m,
AR pnqni (1 Pn)‘]w]
€ - ¥ ,MB_.
a2, 2 [Bl + SR mann s,
Pudni 1 =q.)gs s 9
Xl n nt + n kel + ) ,. ny .
Og[u(A“-) u(B,,) “Z @i1%8 (B, )

From these inequalities it is not difficult to show that
the function

PR XV Na) +apn fu

(Aﬂl)

is constant on the set of all simple probabilities f,

> iala,/uld,)]IA, mving the same support A, =UT1 4 .
Indeed, let

flm log

_ X ;
qﬂi_E;‘n:"lxj, xi>0VZ,
S( 1
(Vuxz, m —-ap, izl\/(zj "X, )
Xi
XlOg[ (Am) Zm"x]

and let f denote the function
(3 Xy o o v s X )= @, ({5, £, ]).

Then the above inequalities show that f is differentiable
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and that
f aS

= ’ i:1,2,..n,m,
ox;  9x; "

which leads to the desired conclusion.

Hence

oo, 7)) +ap, 7] ,ilog “(ff( 5

is some function C of p,, u(4,), nld), ..., ., ),
f, re N, r+n) and m,. Property (4) implies that C de-
pends on the sets A, only through their measures
u(A,;). Actually one can see by considering the special
case ¢,; = u(A,;)/u(4,) that C depends only on u(A,).

It follows therefore that

+F(p, uA),

¢1({Prfr}) =-a ;}1 Pni; Tni 108 H&“-)

where F is a function of the sequences p =(pg,p1,02,"* ),
and p(4)=(p@,), u,), -++), where A,, ic N, is the
support of the simple function f;,. When f,=[1/p(A)|IA ,
let

v, (5, ma) =a,(p, 7D
~a ) p,loguld,) +F(B, ild).

Now the restriction of ®,, which we shall denote by ¥,,
to the set of sequences s.t,

d) — ___TI”S.__
T e, A, ) ues(BY) |4 xa,

is, by virtue of property (4), a function of the probabili-
ty distribution 7={r,} and the measures {u,(4,),
Le(B,)}. On the other hand, {n(4,), p,} and {ue,(B,),
qs} can be regarded as random variables; similarly
{(uedA,), ne(B,), m,.} can be considered a random 2-
vector. Thus, ¥, and ¥, represent the uncertainty about
these random variables and the random vector, respec-
tively. It can be shown that because of properties (1),
(2), (3), and (6) ¥, and ¥, satisfy properties (3), (4),
5(a), (7), and (38) of Ref. 3. They also satisfy property
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(39) of the same reference. Hence by Corollary 4 of that
reference there exists a nonnegative constant d, a con-
stant F,, and functions F,:R— R, r=1,2, .- s.t.

¥,(p, 1A = —d 2 pi1ogD, + 23 Fio AP, + Foby. (7

Consider the case p,=1, Then ¥, =F,. But a gas with
no particles can be thought of as a mixture of two inde-
pendent gases each of 0 particles. Hence by property (2)

Fy+F,=F, or F,=0.

Now, because of property (6), if p, =1 for some n, then
\Itl(f)-’ “‘(A)) = F,,(U‘SH(A,,))-

Combining this with Lemma 1 yields

1
b, L_i—(z,,_) A =aloguld,) +bn +clogu(a)

(8)
=F (u(4,).

Equation (6) is obtained on combining Eqs. (7) and (8)
and observing that F,—=0. Note however that the con-
stant @ occurring in Eq. (6) is not the a occurring in
Egs. (7) and (8) but a +¢, This proves the lemma,

The theorem is a straightforward consequence of
Lemma 2 and property (5).

Remark: Unlike the result of Ref. 1, the theorem
proved above does not characterize entropy. To do so
one must find a representation not only for ¢, but also
for &,.

Note added in proof: Since the publication of Ref. 1,
related results have appeared, for example, in W. Ochs,
Rep. Math. Phys. 9, 331—54 (1976).

*Research supported in part by the National Research Council
of Canada under Grant A-7677 and by IBM-Italia.

1B, Forte and C,C.A. Sastri, J, Math, Phys. 16, 1453
(1975).

2We shall drop the subscripts whenever writing them becomes
too cumbersome and there is no room for confusion.

*B. Forte,“Sub-additive entropies for a random variable,” to
appear in Boll, Unione Mat, Ital.
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Stationary axially-symmetric solutions of Einstein-Maxwell-

massless scalar field equations*
A. Erig and M. Giirses

Physics Department, Middle East Technical University, Ankara, Turkey

(Received 17 January 1977)

A procedure is presented which enables one to construct solutions to the stationary axially-symmetric

gravitational field coupled to massless scalar and Maxwell fields.

1. INTRODUCTION

Since Janis, Newman, and Winicour® presented a
static, spherically-symmetric solution to the coupled
gravitational and massless-scalar field equations there
has been some effort to generalize this result to more
general space~—times. First Penney? solved the coupled
massless-scalar and gravitational field equations for
the static, axially- symmetric geometry obtaining the
solution of Janis ~Newman—Winicour as a special one
with spherical symmetry. The generalization of the
Reissner—Nordstrom solution in the presence of a
massless-scalar field was also obtained by Penney.?
Later Janis, Robinson, and Winicour? exhibited the
solutions of Einstein-scalar and Brans—Dicke field
equations for static space—times and also gave a proce-
dure to generate static solutions of the coupled
Einstein— Maxwell-scalar field equations and the corre-
sponding Brans —Dicke scalar—tensor theory. Recently,
Penney® has given a conformally-flat solution to coupled
massless-scalar and gravitational field equations.

In this work we present a procedure to obtain solu-
tions to the stationary, axially-symmetric gravitational
field coupled to massless-scalar and nonnull Maxwell
fields. We show that starting from any solution to the
electrovacuum field equations it is possible to generate
a whole class of solutions to the coupled Einstein—
Maxwell-massless scalar field equations by a suitable
redefinition of one of the space—time metric
coefficients,

2. SOLUTIONS TO FIELD EQUATIONS

We start by considering stationary, axially-symmet-
ric space—times where the sources for the geometry
are massless scalar and source-free, nonnull electro-
magnetic fields. The equations to be solved are

R, = _K(q);uq);u*‘FuaFva —%guuFdBFaB)’ 1)
gan);aB:O’ @
FY,=0, Fi,,;6,=0, @)

where & stands for the scalar field,
F,,=4A,, -A (4)

are components of the electromagnetic field tensor and
the semicolon denotes the covariant derivative. For
stationary, axially-symmetric fields the relation

R° +R%,=0,

Vi

v

(5)
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enables us to write the space—time line element in the
Weyl—Papapetrou canonical form

ds?=—exp2P)dt - wdp)?
+exp(— 2y)[exp(2y)(dp® +dz?) +p*d d?], (6)
as in the electrovacuum case, and Eq. (2) reads

V2 =0, (7

where VZ is the flat-space Laplace operator in cylindri-
cal coordinates. The coefficients for the space—time
metric ¥, w and the nonzero components of the electro-
magnetic vector potential A, and A, satisfy exactly the
coupled electrovacuum field equations® independent of
the scalar field #. The remaining field equations

7.,=pl@,,)* = (@ V]~ [expdy) /4p][(w ) = (w .)*]
+(kp/2)[(@ )2 - (2 ,)?]
+(kp/2) exp(-29)[(4, ) - (4, )]
- [kexp(29)/4p][(4; , +wA, ,)?

—(‘43,2 +wA0,z)2]) (8)

Y. =2p¥,0 , —[exp(49)/2plw w , +Kkpd & ,
+rpexp(-2y)A, A, .
- [kexp(29)/plA, , +wA, )4, , +wAh,,),  9)

and

Voo T¥ e TW N+ )* +[expl4u)/40%[(w ,)° +(w )]

+(k/2)[(® ) +(@ )]=0 (10)
enable us to define
y=9y" +'y°, (11)

where ¥ can be evaluated by integration once a solution
to ¥, w,A,, and A, is known and »® depends only on the
scalar field & as

2y =kp[(® - (2@ )], (12)

2y%, =2kpd & ,, (13)

which again can be evaluated by integration once a
solution of Eq. (7) is specified. Thus we may state the
following theorem.

Theorvem: If Y, w,v",A,, and A; form a solution to the
electrovacuum field equations for the metric (6), then
P, w,¥,A,, and A;, where

y=y"+y*, (14)

Copyright © 1977 American Institute of Physics 1303



2y%, =xp[(® ) ~(® )], (15)
29%,=2xp% , % ,, (16)
v =0, am)

is the corresponding solution to the coupled Einstein—
Maxwell-massless scalar field (E,M. S, ) equations for
the metric given by Eq. (6).

3. CONCLUDING REMARKS

We have shown that for stationary, axially-symmetric
electrovacuum space—times presence of a massless
scalar field as an additional source for the geometry
merely results in a redefinition of one of the metric
coefficients, provided, of course, that the line element
is expressed in the Weyl—Papapetrou canonical form
(6). Thus starting from any known solution of the
coupled Einstein—Maxwell field equations it is possible
to generate solutions to the E.M.S. equations by appli-
cation of the theorem stated, As a simple example,
starting from flat space we obtain

ds® = ~df +exp(2y®)(dp® +dz%) +p2d o, (18)

solutions describing a2 space —time where the source is
a massless scalar field only. Application of the theorem
to electrovacuum solutions of the Tomimatsu and Sato’

1304 J. Math. Phys., Vol. 18, No. 7, July 1977

and Ernst®'® results in a class of five-parameter solu-
tions of the (E.M. S.) equations with parameters de-
scribing mass (m), electromagnetic charge (e), scalar
charge (A4), rotation (@), and deformation (5). To ob-
tain the solution of Janis, Newman and Winicour in the
limit, it will be enough to take =0, e=0, and 672

- kA? =1, which reduces the solution to a static,
spherically-symmetric one.

Finally, we would like to add that it is also possible
to generate the corresponding Einstein—Maxwell-con-
formal scalar field solutions® and solutions of the
Brans—Dicke scalar—tensor theory.*'°

*Research supported in part by the Turkish Scientific and
Technical Research Council (T. B, T.A.K.).
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Fluid space-times including electromagnetic fields
admitting symmetry mappings belonging to the family of

contracted Ricci collineations
L. K. Norris, L. H. Green, and W. R. Davis

Department of Physics, North Carolina State University, Raleigh, North Carolina 27607

(Received 28 December 1976)

This paper investigates certain symmetry mappings belonging to the family of contracted Ricci
collineations (FCRC) (satisfying g%(R; =0) admitted by the general fluid space-times, including
electromagnetic fields, that were classified and studied earlier by Stewart and Ellis (1967). Many of the
results obtained are applicable to the perfect fluid models treated by Wainwright (1970) and Krasifiski
(1974,1975). A major part of this paper represents an extension of previous investigations (1976) of the
Robertson-Walker metrics and more general perfect fluid space-times that admit FCRC symmetry
mappings and concomitant conservation expressions. More specifically, these results provide a number of
theorems relating to the more general fluid space-times that admit FCRC symmetry mappings (including
both timelike and spacelike symmetry vectors) that lead to conservation expressions and specific conditions
on the metric tensors for the given particular cases of these space-times. Also the form of the symmetry
mappings induced on the electromagnetic fields (when they are present) is investigated in the case where
specific symmetry mappings on the metric tensor are admitted. In particular, the results of Wainwright
and Yaremovicz (1976) relating to homothetic motions admitted by given space—times, corresponding to
perfect fluids including electromagnetic fields, are largely embraced by the more general results obtained

in this paper.

1. INTRODUCTION

In several recent publications!~3 an important family
of symmetry mappings, called the family of contracted
Ricci collineations (FCRC) (satisfying g*//R;; =0) was
introduced together with considerations of certain con-
comitant field conservation expressions. Figure 1 of
this paper provides a symmetry property inclusion
diagram?® which indicates that the FCRC embraces a
large family of symmetry properties that includes as
special cases more familiar symmetry properties
[e.g., motions (M), affine collineations (AC), and Rieci
collineations (RC)]. In particular, the FCRC has been
investigated in the case of the Robertson—Walker cos-
mological models? and for more general perfect fluid
space—times, 3

In this paper we extend the work of the above men-
tioned papers in several ways. In Sec. 2 we investigate
timelike FCRC mappings (in the direction of the time-
like eigenvector of the Ricci tensor) for a large class
of exact solutions of the Einstein equations which ex-
hibit local rotational symmetry (LRS) that may be char-
acterized as perfect fluids which include “noninteract-
ing” electromagnetic fields.? Most of the fluid models
that are included in the present investigation were dis-
cussed in an earlier paper by Stewart and Ellis, ® who
classified various particular cases of these models us-
ing dynamical and kinematical quantities. These models,
when specialized to perfect fluids in the absence of elec-
tromagnetic fields, are particular cases of the algebrai-
cally special perfect fluid models studied by
Wainwright. ? In particular, we give a number of theo-
rems that give the necessary and sufficient conditions
that LRS perfect fluid space—times admit particular
FCRC symmetry mappings. These theorems could be
viewed as a partial elaboration of an invariant type of
classification scheme based on the FCRC admitted by
particular models,

1305 Journal of Mathematical Physics, Vol. 18, No. 7, July 1977

In Sec. 3 we study spacelike FCRC symmetry map-
pings. Most of the results of this section will apply to

FCRC

- — =
—

AC \

- — ——— ]
L -

HM

FIG. 1. Symmetry property inclusion diagram4. 0, FCRC-
members of family of contracted Ricci collineations: g LR”
=0, 1, RC-Ricei collineation:LRH=0. 2. CC-curvature col-
lineation: L Ry, =0. 3. AC-affine collineation: L T%,=0.

4, Conf M-conformal motion: /_gi j=20&;;. 5. S Conf M-special
conformal motion: Lg”= 208335 ViV 0=0,6, HM-homothetic
motion: Lg”=2trg”, o=const, 7. M-motion: L g;,=0,
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LRS perfect fluid space—times which include electro-
magnetic fields that were studied earlier by Stewart
and Ellis® and to the perfect fluid models (with no elec-
tromagnetic fields) recently considered by Kransifiski®
and Wainwright, ” More specifically we give an exten-
sion of a generalized Kelvin—Helmholtz theorem found
previously by Oliver and Davis.®

In Sec. 4 we consider symmetry mappings on the
electromagnetic field tensor and related mappings on
the space—time metric which can be members of the
FCRC. In particular, the results of Wainwright and
Yaremovicz® and others!? relating to homothetic mo-
tions (HM) and motions admitted by space—times, cor-
responding to perfect fluids including electromagnetic
fields, are largely embraced by the more general
results obtained in this section,

In an appendix we give the necessary detailed results
required for the considerations in this paper relating
to computations of various quantities characterizing the
exact solutions studied by Stewart and Ellis. Throughout
this paper statements such as “Case II....” will refer to
the classification of the LRS space~times given in the
appendix.

2. TIMELIKE FCRC SYMMETRY MAPPINGS FOR
LRS PERFECT FLUID SPACE-TIMES

The family of contracted Ricci collineations {FCRC)
is defined by conditional relations of the from

LR,=H,, g'H,=0, (2.1)

where H,, is any trace-free symmetric tensor that is
not identically equal to LR“. Here / denotes the opera-
tion of Lie differentiation with respect to the vector ni
where ¥ —x%+en’, When, for a particular H,; in a given
space—time, a vector n' satisfying (2.1) can be deter-
mined to within a multiplicative constant, then we say
that the given space—time admits this FCRC symmetry
property. When a particular choice of H;, in a given
space—time does not permit the determination of the
vector 7' {(e.g., when 7! is only determined to within

an arbitrary multiplicative function f satisfying n"aif
=0) then we term the mapping an FCRC quasisymmetry
property. For both FCRC symmetry and quasisymmetry
properties it can be shown that the defining relation
(2.1) leads to the conservation expression'*

vV [- V=g zLg + gV M=V (V- g Rin?)
=2,(V=gRin)=0. (2.2)

Throughout the rest of this section we restrict our
attention to LRS perfect fluid space—times in the
absence of electromagnetic fields. We shall also assume
that 2p,=u +3p >0,

For perfect fluid space—times with matter tensors
of the form

T, = bug, = pYy,: (2.3)

we will consider timelike symmetry mapping vectors
of the form ni = gu’, i.e., symmetry mappings along
the direction of the matter flow. In a recent paper it
was shown? that for mapping vectors of the form 7'

= ¢u', [ R,, may be expressed in the form
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LRy =yluu, ~3g,,) + 2pu ¥ (a9 + 3,9)
+ 2090, + 28,V (poout), (2.4)

where it has been assumed that p,= (i + 3p)/2> 0, where
Ry =pouu; + py;; and

b= 29,[p@u] - §(2p,) 209 [ (20, 2], (2.5)

We observe that no sum of terms on the right-hand
side of (2.4) can vanish unless each individual term in
the given sum vanishes. Note that if nf = ¢u’ is an FCRC
mapping vector then the last term on the right-hand
side of (2.4) will vanish by (2.2). These remarks
suggest the following three distinct types of choices for
the tensor H,,'*:

1

Hi =Mugu, - 58;;) +2p90,, (2.6)

2

H, =2pguv}la0 + 3,91+ 2p00,, 2.7

3

Hy, = Mugu, - 5g;) + 2pu v la,0 + 3,91, (2.8)
where

A=—Hpy Q)Y [pp 2ut]. (2.9)

We now proceed to investigate in turn each of these
types of symmetry demands in the case of LRS perfect
fluid space—times.

Theorem 2.1: A LRS perfect fluid space—time with
o> 0 admits the timelike FCRC symwmetry property
LR,.j:éij with i = @ut if and only if (i) o=f ")/ (XTV?p,)
and (ii) 2,(@F)=0,

Proof : First, assume that this symmetry prope{'ty is
admitted. From the identity (2.4), setting LR, =H;
with 7 = @u* and p, > 0, implies (a) vV, (p,¢u’)="0 and (b)
a,¢+ vid, ¢ =0. Condition (a) can be solved for ¢ in the
form @ =f(x*,x*,x%)/(XY?p,), f arbitrary. Using the
results given in the Appendix we find (b) equivalent to
the three conditions: (i) &,{ln@F)=0, (ii) 3,(In@)=0,
and (iii) y9,(Iny) - k9, (InF)+ 3;In¢ =0. However, be-
cause of the properties of the functions y,%, F, and
XY?p, in the three main cases, (iii) reduces to 3,inp =0.
The proof of the converse is straightforward.

Using the properties listed in the Appendix for the
major cases it is easy to show that in Cases I and III
this timelike FCRC symmetry property is admitted,
where ¢ = (const)/F and ¢ = (const)/(XY¥?p,) in Case I
and Case III, respectively. In fact, because oflthe
special properties of the solutions, in Case I H; = 0
and hence this type of symmetry would correspond to
Ricci collineations., Moreover, it is not difficult to show
that this case I RC degenerates to a motion. Applying
the conditions of the above theorem to Case II we find
@ =f(x")/(XY?p,) where ¢ must satisfy the additional
condition 3,(¢F)=0. If we assume an equation of state
of the form p=(y -1}y, 1<y=<2, and put a,=0 then we
may consider the homogeneous solutions in subcase Ila
considered by Stewart and Ellis.'® All of these homo-
geneous solutions (containing for example a generalized
Einstein—de Sitter universe) admit the timelike FCRC
symmetry property of Theorem 2.1 with f=const. Sub-
case IIb contains the Robertson—Walker solutions with
a=0,= 0. For these solutions we find that the above
timelike symmetry reduces to the symmetry property
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found earlier? with ¢ = (const)/j}z,__where F(x°) is the

“cosmic scale factor”* and where 7=9,9,7.

Theorem 2.2: A LRS pevfect fluid space—time, with

0> 0, admits the timelike FCRC quasisymmelry prop-
erty LR = H ;s With M= @ut | if and only if (1)<0 f(x
%, %%)/ (XYZ,OO) £ arbitvary and (i) 3[X*Y*p,}=

Proof: Assume first that the symmetry / R; :H”
with 7 = gu* is,admitted. From (2. 4) we observe that
setting /R, =H, , n=qu’, implies (a ) V.[ps/%ui]=0
and (b) V [p,¢ui]=0. These two conditions together
imply (c) u*3,¢ = @6, while condition (b} can be solved
for @ in the form ¢=f(x",%*,x%)/(XY?p,), f arbitrary.
Using this expression for ¢ and the expression for 6
given in the Appendix in (¢) we find 3, [X*¥p,]= 0.

Conversely, assuming conditions (i) and (ii) for n*
= @u! one can reverse the steps of the above proof and
show /R, H

We observe that Case I solutions satisfy condition

(ii) of this theorem and hence admit this quasisymmetry.

There is a subcase IIa solution, given by Stewart and
Ellis'® with an equation of state of the form u=p that
satisfies condition (ii} of this theorem and thus also
admits this FCRC quasisymmetry. None of the special
Case III solutions presented by Stewart and Ellis admit
this quasisymmetry property.

Theorem 2.3: A LRS perfect fluid space—time with
o~ 0 admils the timelike FCRC quasisymmelyry prop-

ertv LR;=H, with n'=qu’, if and only if (i) ¢=f(x"
X )/(XY 0o} and eithev (u) o,; =0 oy (iil) p=0.

Pyoof: The proof of this theorem follows from the
identity (2.4) in a manner similar to the proofs of the
preceding theorems,

We observe thag bec%use of the special properties of
Case I solutions H,,;=H,, (in Case I). Hence Theorems
(2.2) and (2. 3) are equivalent in Case I. Case IIb solu-
tions contain the Robertson—Walker models, which are
shear free, and hence admit this FCRC quasisymmetry.
Stewart and Ellis list, for subcase 1Ia, a generalization
of the Einstein—deSitter universe, ** This model is also
shear free and hence satisfies condition (ii) of Theorem
2.3 and thus admits the FCRC quasisymmetry of this
theorem. For futher discussion of the physical inter-
pretation of the conservation laws that follow in conse-
quence of timelike members of the FCRC being admitted
we refer the reader to the relevani papers'~® mentioned
in the Introduction.

3. SPACELIKE FCRC SYMMETRY MAPPINGS FOR
LRS PERFECT FLUID SPACE-TIMES

In terms of the definitions, Ricci collineations are
evidently the simplest proper members of the FCRC.
Here we will consider first under what conditions
space~times, corresponding to LRS perfect fluids that
include electromagnetic fields, admit RC which have
symmetry vectors 7t of the form 7= (ph’

Theorem 3.1: A LRS perfectﬂmd space—time admils
a RC with n* = ol if and only if (i) 9,(p,/ F2)=0, (ii)
3,(¢%p,) =0, (iii) @ {p.Y?) =0 and (iv) either p,=0 or
0(<p/X) 0, 3,0=0, 3,¢=0.
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Proof : Assume a RC is admitted by the given space—
time. The Ricci tensor can be expressed in the form
R,;=Ya=0€aPolt;lt;- Therefore, the RC condition now
becomes

ie { thu+Pa Lh; +hth‘]} 0.

Forming the independent projections of the above
equation yields: (a) Lp, + 2e,p 'L ; =0, @=0,1,2,3
and (b) p, h'Lh +th'/_h =0, a#ﬁ, a@,83=1,2, 3 Takmg
a=0,1, and%( n (a )g1vesh’a pO/F‘Z
{z l(<p pi) 0, and ! a ( ,Y%) =0, respectlvely Takmg
a=1, f=0in (b) glves p,=0or {z‘hlioij 0=—u a!lnq?.
Using the results given in the Appendix, the last equa-
tion can be re-expressed as 3,(¢/X)=0. Letting a=1,
B=2 in {b) gives p, =0 or h’a ;©=0. Letting a=1, 8= 3
in (b) gives h’& p=0o0r pl_O If p, # 0 then hfa ;=0
implies yao<p + halw +9,¢=0. From the clas31f1cat10n
scheme given in the Appendix, if y#0 then X=1 and
using 3,(¢/X)=0 we see that 3,¢=0. Similarly if 4#0
then p, = p,(x°) and using 9,{¢®p,) =0 we see that 3,¢=0.
Therefore, the condition 2#9,¢ =0 reduces to 3;,¢=0.
The rest of the proof follows in a straightforward
manner.

Neither subcase Ib nor subcase 1c admits a RC with
a symmetry vector of the form ni = w{z‘. In subcase Ia
all of the conditions of the above theorem are met,
however, the RC degenerates to a motion. In Case II
the conditions of the theorem are satisfied only in
special cases. All Case Il space~times satisfy the
above theorem, however, the RC degenerates to a
motion.

Next we consider a more general type of FCRC map-
ping which is admitted by some of the exact solutions
given by Stewart and Ellis.

Theorem 3.2: A matter fluid space—time, that is
R, =pouu;+S,, @S, =0), admits the FCRC quasisym-
metry mappmg g'fLR =0, !/ R, =0 with n° = pu'
if and only if (1} V (pow‘) 0 and (11) H{oSiw!)=0,

Proof : One can easily show that »'«// R, =0 is equi-
valent to 7*3,0, ~ 2p,n*a, = 0. Using n*= ¢w* and the
identity V,w*+ 2a,w*=0 we find V, (p,w')=0. The
second condition follows from conservation expression
(2.2).

This theorem'® will be discussed presently within
the context of a generalized Kelvin —Helmholtz theorem.

We now restrict ourselves to perfect fluid space—
times in the absence of electromagnetic fields, For the
case of a perfect fluid with n*%,=0 one finds the general
result

LR ;= pluu; -
+p(Ln),, + 38, Y, (on"),

&:;)+ 2(p,- ICHINE SR o
(3.1)

where R, = pguu, + pyy,, $=n%3,(p, - p) = n*a,(p, ~ p),
and (Ln),, =V, +Vm, -3(Vatg,,. This decomposition
of [_R suggests several possible distinct types of
spacellke members of the FCRC that could be of
interest. We observe that if LR” =Pluu, ~ %g”)

+2(py = p) X (u;w,; + ujwh.)n", then (L7),, =0, hence the
FCRC degenerates to a conformal motion, where n

Norris, Green, and Davis 1307



satisfies V,V/(V n*)=0. We also observe that if LR,
= Pluu, ~ 4g,j)+p(Ln)” then w*= An* for some A.

Theovem 3.3: A perfect fluid space—lime admits the
FCRC quasisymmelry property LR, = p(Ln), with 7'

= @w! if and only if (i) V [(p, - p)zw’:]j 0 and (ii) V, (@pw?)
=0.

Proof: Assume [ R;;=p(L7n),;. Comparing this rela-
tion with the identity mappmg (3 1) we find Ylu,u, - 3g,,)

+38;,V,(pn*)=0. If we take the trace of this equatlon we
find ¥V, (on*)=0. Since V,(on*)=0 either y=0 or (u, u;

4g”) 0. However, (uu, — 4g”) cannot be zero, ‘thus
$=0. If y=0, then 7% (po -n*a,(p, - p)=0. Usmg
the identity v, 2+ 20,07 =0 we find V,e[(p0 - pPwk]=0.
The rest of the proof follows in a similar manner.

We now interpret the previous two theorems using
some results obtained by Greenberg.'® In particular
Greenberg demonstrated that

(3.2)

where A is the proper area subtended by the vortex lines
as they pass through the screen which is the 2-surface
dual to the surface formed by «,; and w, and where
DA/DT7=(w'/w)?,A. If the space—time under considera-
tion admits a FCRC symmetry mapping with symmetry
vector 7t of the form n = ¢w? and ! is an eigenvector
of the Ricci tensor (with eigenvalue p ) we have from
the field conservation expression (2.2) V (¢p, w*) =0
Using V, o' +2q,w! = 0 along with Greenberg’s result we
find

LD (prr2pizga) =0, (3.3)

DT
Thus we have that ¢'/%pl/® wAis a constant along the
vortex flow. This result may be regarded as a generali-
zation of the Kelvin—Helmholtz theorem'” of Newtonian
fluid theory which essentially states that wA is constant
along the vortex flow, 1%

Next we examine the above results in the context of
certain Case I solutions considered by Stewart and Ellis.
In particular, we note that the FCRC quasisymmetry
mapping g'// R, :2Vi(RJ':nf): 0 with i = @' is admitted
in all Case [ solutions if ¢ is of the form @ =f(x°,s%,
¥*)F/p,wY? (where p,#0 and f is an arbitrary function of
¥°, %, and x* not determined by the symmetry demand).
Therefore, in accord with the previous discussion we
tind ¢'/? ”2wA:[f(x“,xz,x3)Fw/Y2]”2A is conserved
along the vortex flow. Stewart and Ellis consider a
particular exact solution which corresponds to a Case |
barotropic fluid which has acceleration and rotation.
This particular solution is given by:'® w = w,/F(x")
(wWe#0); p=A ~v+ T -/ F% p=-N+r-7+302/F°,
and x* = [[¢F* + (27 = »)F? — W2]""/2dF where ¢, 7,7 are
constant. Thus, in this particular case the quantity
@2l PwA = {f (20, 4%, PV Fw/ Y21 24 = (fw ) /24 is con-
served along the vortex flow.

If we specialize the above model by setting 27 -+»=0
and 2w? =c then the conditions of Theorem 3.2 are
satisfied. This then gives the following two conserva-
tion expressions: (i) V,(p,0*)=0 and (ii) V, (¢p,w*) =0
For this special case one finds p,=0 (L= —A+ 7+ 3w}/
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F®, p=A -~ 7— w?/F®) hence, the conservation expres-
sion V,(p,w*)=0 is trivially satisfied and no Kelvin—
Helmholtz type theorem is obtained. The conservation
expression V,(¢p;w*) is the same expression as dis-
cussed above which does provide a type of generalized
Kelvin—Helmholtz conservation expression.

4. SYMMETRY MAPPINGS OF THE ELECTROMAGNETIC
FIELD

it is of interest, in connection with a study of sym-
metry mappings admitted by perfect fluids including
electromagnetic fields, to consider the explicit form of
symmetry mappings of the electromagnetic field tensor.
Several aspects of this problem have received consider -
able attention in the recent literature. %1% Here we
are particularly interested in considering symmetry
mappings of the electromagnetic field as they relate to
the family of contracted Ricci collineations.

Wainwright and Yaremovicz® have studied perfect
fluid space—times with null and nonnull electromagnetic
fields present, under the assumption that the space—
time admits a homothetic motion (HM, i.e., Lg;,
=20g,., 0= const). In accord with this assumption,
together with the field equations, they show that the
electromagnetic field tensor F” and its dual *Fij satisfy

LF =0F, +0F, (4.1)
and
[¥F, = 0*F - OF,

i’ (4.2)
with =/ @ where « is the complexion® of the electro-
magnetic {ield. We observe that the pair of symmetry
mappings {4.1) and (4.2) have the interesting property
that they imply g”L 7,;= 0, independent of the form of
Lg”, where 7, 2(F F, “r *F,, *F,") is the electro-
magnetic stress -energy— momentum tensor. Hence the
symmetry mappings (4.1) and (4. 2) on the electromag-
netic field tensor and its dual induce an FCRC symmetry
mapping for electrovac space—times. This suggests
that a generalized form of the mappings (4.1) and (4. 2)
together with the corresponding generalized symmetry
mapping on the space-—time metric could lead to more
general FCRC symmetry mappings in the case of matter
space—times including electromagnetic fields. In order
to find such a generalization we first note that (4.1) and
(4.2) are special cases of mappings [ F,, and L*F,,
which satisfy

LFii 277 (rka ,mbl* Fab

ifkm™>

{4.3)

In particular if / F;; and / *F,; satisfy (4.3) then we
again have g/ 7. =0 independent of the form of /g, .
Of course, if (4.3) holds in a given space—time, condi-
tions will be placed on the metric.

Theorem 4.1: The eleclvomagnetic field lensoy F,
and its dual *F, satisfy (4.3) if and only if the space—
time metric salisfies [ g, =20g, +1,;, where A, is «
trace-free symmelric tensor thal satisfies * Fi AR
=*FI A%,

Proof : By definition we have F,;= —37;,,8"8™ *F
By taking the Lie derivative of both sides of this equa-
tion and assuming (4. 3) we obtain *F, /. (n,-,-,,,,.g"’g"“): 0.
Using Lnijkm = nijkmvrnrzgn ijmg”Lgn we may rewrite
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this last equation as (a) n,,,, *F*(Lg™ + 38™ g™ g,,)
=0. Defining A =~/ gt/ — jgligt™[ o we obtain from
(a) that *I«‘_ij""f =0 as desired. The converse is
proved by reversing the steps of the above proof.

We note that by starting with *F, = zn”kmb g™,
assuming [ *F, = NS E™LF,, [which is equivalent
to (4. 3)] and repeating the steps in the above proof one

can derive the equivalent conditions FE;?A""!' =0on A¥.

This theorem demonstrates that the general relation-
ship (4. 3) between LF” and /*F,; is induced by the
mapping

Lgij:20gij+[\ij (4.4)

on the space—time metric, where A, must satisfy cer-
tain conditions. Only in the case A;; =0 does this map-
ping on the metric correspond to a conformal motion.
An example of a nonzero symmetric tensor®+** A, that
can satisfy the conditions of the above theorem is A,
= ak;k;, where a is an arbitrary function and %, is a
null eigenvector of F,;; and *Fij.

Having determined the general mapping (4.4) on the
metric that induces the relationship (4.3), we can now
in turn use (4. 4) to determine the explicit form of the
mappings on F,; and *Fij. We formalize these results
for the nonnull case in the following theorem.

Theovem 4.2: A space—time conlaining a nonnull
electromagnetic field admils the symmelyy mapping
Lgij =20g,, ¥ A, where Aij is a trace-free svmmelric

tensor that satisfies Fi,a*=F¥ Ni | if and only if

LFU =0oF,, + B*F” + A’;;"L Tem (4.5)
and

L¥F, =0*F, —OF, +*a&/ 1 (4.6)

km

where 0=/ a, A= _ (1/8f*)F, T* -

if
X 83 F™) cos(2a) ~ b
Hew ZT i IS to be evalzmled using the field equations,
LTU—LRH [—(Tn “,T)_—-2V v 0 —& (V Vo)
+ VkV(iA;) ~ 5V VRA - [T, - 28, T) where T, ‘is llze
noneleclvomagnelic pavt of /110 lotal malter tensor.

_1y2
2(7“‘”7'“ )

Proof: Assume the space—time admits the symmetry
mapping [ g, =20g;; + A, where A, is a symmetric
trace-free tensor which satisfies Fi A™ = Fi A7 We
now want to calculate / F” F;, can be expressed in the
form™® F, =f, cosa+*f, sina with f,; = f(k,n, = k;n,)
where f,, 1s the S0- called extremal fleld o' IS the com-
plexion, and n; and k; are the null eigenvectors of 7,
{n;k*=1). In order to evaluate / F,, we need to evaluate
Lf;;- We do this by expressing / f, Lk, [ n, in terms of
LT . In the case of nonnull electromagnetic fields 7,
= —fz[g” —2(k;n; +nk;)]. From the relation Fi AT
= Fi_Av" one can show A! n"=ek?, A’ k" =yn' and there-
fore Tk, =0. We find Lf~ - of+ (1/8f 7T, Lki

=[20 1/8f4 )T =k n, e+ (/27 T,

ij?

Ln, ——[20 (/8 )y 7 —amLk min; + (n’/2f2)LT Using
these three equations we obtain Lf =[o-(1/8f* )T”‘"
xLTmn]ftj 1/2f)[k ﬂkLT + nkLT —knLT,k—n kkLTjk]

and a similar result for L*f We now calculate LF
and find

LF,=0oF, + (L aWF, -[(T"[7,)/8f*]F,,
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*F”” sm(2a)}’ and * A = gangﬁ aqu"",

cosa sina
+< o7 6j+

2f 4f
-k T, ~-nk"[T,,

’s)(k n Ty, tnkmLT,

Using the definitions offJ and F given above we find
Eq. (4.5). A similar result can be obtained for L*F
We emphasize that / 7, is to be evaluated using the
field equations. In particular if & = (T, - 38, )+ Ty
where T, is the nonelectromagnetic part of the matter
tensor then L1, ,=LR, [T, -2g,T). Since LR, can
be found from Zg = 20&, +4,, the only indeterminacy
is in the spec1flcat10n of 7;;. The rest of the theorem
follows from Theorem 4. 1.

Theorem 4.2 gives the explicit form of the mappings
on F,, and *F,; when the space—time metric admits
the symmetry mapping (4.4). When the mapping (4. 4)
is consistent with / 7,,=0 then we have [ F,;= oF,

+ o*F and [*F, = 0*F,, - OF,,. These mapplngs
spemahze to the mapplngs found by Wainwright and
Yaremovicz® when A;;=0and o=const, i.e., in the
case of homothetic motions. 2

If the symmetry mapping (4. 4) is to lead to an FCRC
symmetry mapping then it must satisfy g/ &,,=0. By
inserting the mapping (4.4) into g*// R, [or by using
(2.2)] we may express the necessary and sufficient con-
ditions for (4.4) to be a member of the FCRC in terms
of oand A,,.

Theovem 4.3: The symmetry mapping (4.4) {which
implies (4.5) and (4.8) when A, satisfies A} F/*=AYF/F]

is an FCRC symmetry mapping zf and only zf V.V,Al
- GViViO’: 0.

When the conditions of this theorem are satisfied for
a space—time that includes an electromagnetic field,
then the conservation expression (2.2) follows. Further-
more there are certain space—times for which the
symmetry mapping (4. 4) effects a splitting of the con-
servation expression (2.2) into two parts.

Consider those space—~times which may be character-
ized as uncharged fluids including nonnull electromag-
netic fields (e.g., the uncharged LRS models considered
by Stewart and Ellis), and which admit symmetry map-
pings (4.4), (4.5), and (4.6). For those space—times it
follows from g*/ 7,;,=~0and V.74 =0 that V,.(T;:nf): 0
It should be noted that this conservation expression
holds if (4.4) is admitted by the given (uncharged)
space—time, independent of whether or not g‘jLR,.j =0,
If the mapping (4.4) is also an FCRC symmetry mapping
then it follows that the FCRC conservation expression
(2. 2) splits into the two expressions Vi(T;ﬁnf): 0 and
V,[(T¢ - 36iT)m’]=0, where T, is the uncharged fiuid
part of the total matter tensor.

So far in this section we have not made any assump-
tions about the nature of the symmetry vector beyond it
being a solution of the defining symmetry relation (4.4).
We now briefly consider two choices for the symmetry
vector that are suggested by the electromagnetic fields.

When the matter fluid is charged (V,F* =J*#0) one
may consider symmetry vectors in the direction of the
electromagnetic current vector, i.e., n* = @Ji. In this
case we again find g#// Ty =2V, (T' Ji)=0 if ni=@J} is
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a solution of the symmetry mapping (4.4) in the given
space—~time., Thus, if (4.4) is also an FCRC symmetry
mapping then we again obtain a splitting of the conserva-
tion expression (2.2).

In the case of null fields one can consider a mapping
vector that is in the direction of the null eigenvector
(k') of the null electromagnetic field tensor, i.e., 7t
=gk, Thus, if F, k=0 and the source free Maxwell
equations hold, it is not difficult to show that?*-2°
LF¢ =0 and L*F”:O We conclude on the basis of
Theorem 4.1 that any null electromagnetic field space—
time admits a symmetry mapping of the form Lg”
=20g;;+ Ay, with symmetry vector 7i = gk' where A
a trace free symmetric tensor that satisfies A, F7,
:AerTi'

APPENDIX

Stewart and Ellis® have classified the solutions of the
Einstein gravitational equations (with cosmological
constant) for a space—time with local rotational sym-
metry (LRS), near a point P, which contains a perfect
fluid including a “noninteracting” electromagnetic
field.® The matter tensor takes the form T, =uw,u,
—pv;; + 7;, where u, is the average 4—velocxty of the
matter and 7, is the stress-energy—momentum tensor
of the electromagnetic field. In the rest frame of u?,

i is the energy density of the fluid and p is the pressure.

Theovem (Stewart and Ellis): If a space-time contain-
ing a perfect fluid and an electromagnetic field has LRS
near a point P, then the coordinate freedom can be used
to set the metric in the form

ds®=[(dx*)?/ F*(x°,x")] - X*(x°, x*)(dx")?
= Y20, s (dx? VP + £(x*)dx*F]
~ v (A F(x°, 2 [ 2dx° — p(x®)dx®]dx®
+ X2(x°, xM () 2dxt ~ R(xP)dx®)dx®,

where d*t(x®)/(dx* + Kt(x*)=0, dv/dx*= - 2ct(x?),
dh/dx*= - 2Ct(x*), where K, ¢, C are arbitrary con-
stants. The field equations place no extra demands on
the form of the metric except in Case II where the fol-
lowing condition must be satisfied:

FX3,3,Y + X(3,F)(3,Y) - F(3,X)(3,Y)=0

The solution has three major cases and Stewart and
Ellis have subclassified each of these special cases as
listed below:

Case I: Y=Y(x"), F=F(x'), X=1, h=0; 0,,=0, 6=0
subcase [a: ¥ =const, F=const,
subcase Ib: Y =const, 3,F+ 0,
subcase Ic: F=const, 9,Y #0,
subcase Id: 9,Y+#0, 9,F+#0.
CaselI: h=y=0; wi=0
subcase Ila: Y =Y(x°), F=F(x°),
subcase IIb: F=F(x°), 3,Y(x°,x")#0,

subcase ILc: 9,Y(x°,x")# 0, 2,F(x°,x")#0.
1 ’ 1
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Case III: F=1, X=X(x%, Y=Y(x%, y=0; w'=0, a'=0

subcase IITa: ¥ =const,
subcase Il b: 2,Y(x%)#0.

For this class of space—time models the Ricci tensor
can be expressed in the form R, =33 (4,0 (q)k;; Where
en=%1, e ,=-1, u=1,2,3, p,, is the ath eigen-
value of the Ricci tensor (p,=p;) and i is the ath
eigenvector of the Ricci tensor. We now list the nonzero
components of the Ricci tensor, its eigenvalues and

eigenvectors:
Case 1 Case I Case III
R, [4,/ F?] [EO/ F?] C,
Ry -4/ F?] 0 0
R, ~ A, - X*B, - X%C,
R, 0 0 hX?C,
R,, - Y?A, -Y?B, ~-Y?C,
R,, (yon/Fz) - T?Y?A, -Y?2B, ~2X2C, - T?Y?C

ANB,,Cy), A(B,,C)), A,(B,,C,) are the eigenvalues of
the Ricci tensor in Case I (Case II, Case III):

A, ==hhF 20,06, R 20,F)@,Y)

F jo FY Ty
A= a;alF N 2(31;)(5311?) N 231311/ ’
o oan?  @0,FP@y) @0,)0,Y) K 2
2Ty FY Y? 2T Ryt
g 8 F  20,P)@0F)  (0,F)0,X) FOF@X)
°T  FX? FQXZ FX® X
FP3,X 2F%.0,Y 2F(@,F)0,Y) 2(3,F)3,Y)
Tx Ty T Y T FX’y
p O F 2(8,F)(,F) (alF)(a;x) _ F(3,X)(3,F)
1T FX° FzX'" FX® X
Fe303,X _2F°(3,X)(8,Y) | 20,0,Y | 2(3,1)(2,X)
T x T XY Xy Sy
B,= - F23,Y  F@F)@.Y) (3,F)(3,Y) F@X)(3Y)
Y Y FX*Y XY
9,8, Y (0, Y)(8,X) _FH(3,Y)@3,1) (3, V)@,¥) K
XY Y Y? X2yt Ty
=00 X  20,3,Y
T x Ty’
c. =% an 200, X)3,Y)  2C°X°
1 XY T
c,-= 93 (0,X)(0,Y) _ (a_%y)2 _52 N 20°x%
Y XY Y Y Y

Corresponding to these eigenvalues we find a set of
normalized eigenvectors of the Ricci tensor of the form

ui:ézi:(F,0,0,0),

; =(0, X, 0, 0),
gi:(o, 0, Y*, 0),
hi=(y/Yt, h/Yt, 0,1/Y0).

Most of the cases that will concern us will be LRS
perfect fluids in the absence of electromagnetic fields.
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For these cases we place additional restrictions on the
solutions: in Case I, A, =A,; in Case II, B, =B5,; in
Case IIl, C,=C, and R, =pguu; +py;; where p=p,=p,
=Ps.

Using the orthonormal tetrad forgned from the eigen-
vegtors of the Ricci tensor: w'® =hw! =wd{*’, a'*
=h,a' =ad{®, T, e =diaglr,-7,7,7), 6=(a+28),
Oy = diagl0, - 5(a - 8), 3(a-A8), 5(a-p)], where
w=wy/Y?F (w,—nonzero constant in Case I—zero in
Case 1I and Case II), a= - (1/X)?, logF, a=Fa(logX),
B8=Fa,(logY), T=3(E*+ B?), and (0,E,0,0) and (0, B, 0,
0) are the electric and magnetic fields in the rest frame
of u?, respectively.
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B 34, 256 (1976).
’L,H. Green, L.K, Norris, D,R. Oliver, Jr., and W.R,
Davis, “The Robertson—Walker Metric and the Symmetries
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(1976).
4For a more complete symmetry property inclusion diagram
and references relating to the various symmetry properties
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dynamics and Magnetohydvodynamics (Benjamin, New York,
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17We observe that whenever one has an expression of the form
V; W%t) =0, then a generalized Kelvin—Helmholtz type theo-
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search, edited by L. Witten (Wiley, New York, 1962),
pp. 382—411,
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11, 818 (1970), in studying curvature collineations (CC) ad-
mitted by Petrov type N space—times has obtained a similar
mapping on the metric. He has found a mapping of the form
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2For nonnull fields it is not difficult to show that the conditions
placed on At/ in Theorem 4.1 imply that the general form of
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Energy-momentum tensors in the theory of electromagnetic
fields admitting electric and magnetic charge distributions*
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When the field tensor of an electromagnetic field admitting both electric and magnetic charge
distributions is expressed in terms of a Clebsch representation, the extended Maxwell equations in the
presence of a given gravitational field are derivable from an invariant variational principle in which the
Clebsch potentials play the role usually assumed by the classical 4-potentials. The corresponding Lagrange
density gives rise in a unique manner to a symmetric tensor density 7%, which displays some of the

properties normally associated with the energy-momentum tensor density of the electromagnetic field.
However, this interpretation may be in conflict with the generally accepted expression for the modified
Lorentz force. Accordingly an alternative energy—-momentum tensor density 8" is derived which does not
suffer from this drawback. However, when a generalized variational principle for the simultaneous
determination of the behavior of both the electromagnetic and the dynamical gravitational fields is
introduced, the resulting Euler-Lagrange equations give rise to extended Einstein—-Maxwell equations
which involve the density T%. On the other hand, the alternative Einstein—-Maxwell equations, obtained
by the replacement of T by 6", are not derivable from a variational principle. The solutions of the two
Einstein-Maxwell equations, for the case of a spherically symmetric metric and static electromagnetic
field, predict distinctly different effects of the magnetic charges on the gravitational field.

. INTRODUCTION

The classical theory of electromagnetic fields admit-
ting magnetic as well as electric charge distributions,
as described by Schwinger' and others, has recently
been examined® from the point of view of the Clebsch
representations of arbitrary skew-symmetric type (0,2)
tensors in the presence of gravitational fields.? In this
treatment the Clebsch potentials play the role of the 4-
potentials of classical electrodynamics, which allows
for the formulation, against the background of a given
gravitational field, of an invariant variational principle,
from which the field equations may be derived in a rig-
orous manner, Since the corresponding Lagrangian is
required to be a scalar density, it gives rise in a unique
manner to a symmetric type (2,0) tensor density, which
may be interpreted as the energy —momentum density of
the field. However, as will be indicated below, this
particular density suffers from several drawbacks, and
accordingly in Sec. II an alternative energy —momentum
tensor density which does not display such undesirable
features is derived. As a direct consequence of its defi-
nition, the original energy—momentum tensor density
must inevitably appear in the extended Einstein—Max-
well equations if the latter are to be the Euler—
Lagrange equations of an invariant variational principle
for the simultaneous determination of both the electro-
magnetic and the dynamical gravitational fields; how-
ever, as will be seen in Sec, III, the alternative Ein-
stein—Maxwell equations based on the new energy—mo-
mentum tensor density do not appear to be derivable
from a variational principle within this framework,
Moreover, it is found that, for the case of a spherically
symmetry metric and a static electromagnetic field,
the two Einstein—Maxwell equations expressed respec-
tively in terms of these distinct energy—momentum
tensors, predict different effects of magnetic charges
on the gravitational field.

The underlying manifold! is assumed to be a pseudo-
Riemannian space V, endowed with a metric tensor g;;,
it being assumed that g= [det(g,;)| # 0. The entire

1312 Journal of Mathematical Physics, Vol. 18, No. 7, July 1977

theory is based on two assumptions, namely that the
electromagnetic field is represented by a skew-sym-
metric tensor field Fy;, and that the behavior of the
latter (in the presence of gravitational effects) is
governed by the Euler—Lagrange equations resulting
from the Lagrange density

L =4VgF¥F,; = §,J" + $,5%, 1.1)

where J", S* denote the electric and magnetic current
densities respectively, while ¥,, ¢, are the aforemen-
tioned Clebsch potentials which appear in the Clebsch
representation of F,;. This representation is deter-
mined uniquely by the Euler—Lagrange equations as-
sociated with (1.1), namely as

Fpj=fns +1bps, (1.2)
where
Fus=Wsin= Un1js BN =g 2R, (1.3)

while the remaining Euler—Lagrange equations give
rise to the extended Maxwell equations

VgF" == J" VgF*h =8 (1.4)
where F*/* denotes the dual of F/ that is,
Fxit —5igmt 2 IhRE (1.5)

Since the Lagrangian (1.1) is a scalar density, the
expressions

o oL
ogn;’

are the components of a type (2,0) tensor density {ield,”
whose explicit form is given by

AT =Vg [F = tnir) + F* (@115 — a2
— H(F - F)si]. (1.7

Thj:—ZC (1.6)

This field has the following properties: (i) T% is sym-
metric; (ii) T%=0; (iii) T",; =0 whenever Maxwell’s
equations with J*=0, §*=0 are satisfied; (iv) T* re-
duces to the energy—momentum tensor of classical
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electrodynamics in the absence of magnetic charges.
Accordingly the tensor density (1.6) was interpreted in
Ref. 2 as the enevgy—momenitum tensor density of the
electromagnetic field, However, this interpretation
suffers from the following drawbacks: (v) Although T/
is invariant under all gauge transformations of the
Clebsch potentials, its explicit expression does not in-
volve only F,;, but also the derivatives of the Clebsch
potentials; (vi) when the rate of work done by the field
on a test particle carrying both electric and magnetic
charges is evaluated in terms of the modified Lorentz
force (the latter having been obtained from a separate
single integral variational principle), the resulting ex-
pression is not, in general, consistent with the 4-di-
vergence of T]. Because of property (iv), these diffi-
culties do not arise in the absence of magnetic charges.

One is therefore confronted with two alternatives, On
the one hand, one might abandon the modified Lorentz
force (which, in flat space—time, reduces to the
Lorentz force postulated by Schwinger® and others);
this would necessitate the replacement of the afore-
mentioned single integral variational principle, which is
independent of {1.1), by a more appropriate one. On
the other hand, one might seek an alternative energy—
momentum tensor 6% which possesses the desirable
properties (i)—(iv), but which does not display the draw-
backs (v) and (vi). In view of the physical feasibility as
well as the mathematical simplicity of of the modified
Lorentz force, the second of these alternatives will be
explored here: This is the objective of the present
note.

Il. THE ALTERNATIVE ENERGY-MOMENTUM
TENSOR

In a flat space—time the modified Lorentz force due
to electric and magnetic field strengths E and H is as-
sumed to possess the form

F=[pE+(1/c)jXH]+[oH~ (1/c)sXE], (2.1)

where p and 0 represent the electric and magnetic
charge densities respectively, the 4-vector representa~
tion of J* and S* being taken as

J'=((1/c)j,ip), S"=((1/c)s,io). 2.2)
In terms of the usual identification’

iEq=Fyy, iHy=Fgy, 2.3)
the relation (2.1) may be shown to be equivalent to

F,=F, J' =F% 8 (a=1,2,3), (2.4)
to which we adjoin a fourth component, namely

F,=F,J'-FfS' =ic'[E~]{ +H-s], (2.5)

which represents the rate at which work is done by the
field. Since the Maxwell equations (1.4) imply that

: ) JH
j=cVXH 5 S cVXE T (2.6)
it follows that (2.5) is equivalent to
iC(F41J,—FrlS’):E°aa_Et""H’aa‘I:"'C(H'vxE—E"vXH)
1
=3 8% (E? + H?) + ¢ div(EXH). 2.7
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In regions devoid of electric and magnetic charges this
gives rise to an equation of continuity, that is, a con-
servation law. Thus, in accordance with our program,
we shall now construct a tensor density 8] which is such
that, in flat space—time, the right-hand side of (2.7)

is proportional to the 4-divergence of 6].

The relations (2.4) and (2.5) clearly indicate that this
purpose will have been attained quite generally if the re-
quired tensor density 6 is such that

-t =FuJ' - F§S, (2.8)

as a consequence of Maxwell’s equations (1. 4), and this
condition is certainly satisfied if

%05, =Vg (FuF't ;+ FRF* ). 2.9)

Now, from the definition (1.5) it follows that
€ntpeF ™ =50 P e o
=2ig™ 2SIk s

=1g™ HE pqin + Fantp + Fapia)- (2.10)

This is multiplied by F*?, which gives

Entpg FPF* = ig™ G (FPF o) 1n + 2F*Fnip), - (2.11)
where repeated use has been made of the skew-sym-
metry of F?, It is now observed that the inverse of

(1.5) is given by
F;.:l :%1'g1 /ZehlquN’
and accordingly (2.11) yields

FiF*t  =F"F ;- s F™F ) 1. (2.12)

This is merely an identity which depends solely on the
skew-symmetric character of F,; and the definition of
its dual. However, when (2,12) is substituted in the
condition (2.9), the latter becomes

6 = Vg [Fp Fity;+ Fy 1 F = 3(FF )
=VglFp F' = 56{(F'F )5,
which may be integrated to yield

0t =Vg [FuFit - {6J(F™F, )] (2.13)

This, then, is the required form of the altiernative en-
ergy—momentum tensov densily. It is remarkable that
its formal structure in terms of F,; is identical with that
of the energy—momentum tensor of classical electro~
dynamics, despite the fact that the representation (1. 2)
of F;; involves 2- (rather than 1-) vector fields.

It is obvious that the tensor field 6] as defined by
(2.13) satisfies the conditions (i)—(iv) of the previous
section, while, as a result of our construction, the ob-
jections (v) and (vi) do not apply.

1. THE EXTENDED EINSTEIN-MAXWELL EQUATIONS

In the above theory it is tacitly assumed that the
metric tensor of V,; assumes preassigned values. How-
ever, if the Lagrangian (1.1) is augmented by an addi-
tive term @ VgR, where a is a suitably chosen constant
and R denotes the scalar curvature of V,, the variational
principle® based on the resulting Lagrangian L not only
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yields the Clebsch representations (1.2), (1.3) of F,,,
the Maxwell equations (1.4), but also the field equations
n vacuo

VgRM == 8nkc2TH, (3.1)

in which R™ is the Ricci tensor and « is the gravitational
constant. The presence of 7% on the right-hand side of
(3.1) is a direct consequence of its definition (1.6) and
the appearance of the term - 81:/8g,”- in the Euler—
Lagrange equation for g,;.

Again one is confronted with two alternatives. First,
it would seem to be more consistent with the analysis
above to replace T* by 6" in (3.1), But, under these
circumstances, the resulting Einstein—Maxwell equa-
tions could be derivable from a variational principle
only if it is possible to construct a Lagrangian L* which
is such that (1.2}, (1.3), (1.4) remain unchanged, the
term ~ aL*/ag,; giving rise to 6" rather than to T,
The second alternative is simply the acceptance of (3.1)
without change.

Let us briefly consider the first possibility, setting
(3.2)

Our requirements would be met if the Euler—Lagrange
equations of / for the Clebsch potentials ¢,, ¢, are
satisfied identically, and if

-~

[ =L*-1L,

-2 al :CZ(OIU' - foj)‘

3.3

9gnj ( )

But since (1. 7) can be expressed in the form
FTi=Vg[Fi'fy +iF* b} - 16(F - F)], (3.4)

it follows with the aid of (2.13) that (3.2) is equivalent
to the condition that

_Z.i_'\/—_ mh[FJ'lb +F*“b* ] 3 5)

%n; =ivgg ml mtl .

With the aid of (1.2) and (1. 3) it is seen by inspection
that the right-hand side of (3.5) is a quadratic poly -
nomial in ¢,1;, ¢y, which is also homogeneous of de-
gree - 1 in g,;. Hence / must be a density which is
homogeneous of degree 0 in g,; while being quadratic in
Pntj» bal;. Now, it is readily verified that the only den-
sity satisfying these requirements for which the Euler—
Lagrange equations for ¢, and ¢, are satisfied identi-
cally possesses the form

! hili hilk
Ay, s+ B 10015+ CeM R dp 110014,

where 4, B, C are arbitrary constants. But since this
expression is actually independent of g,;, it cannot pos-
sibly satisfy the condition (3.5). It is therefore conclud-
ed that there does not exist a density / of the required
kind. Thus it would appear that, within the present
framework, the alternative to the field equations (3.1},
namely

VgRM =~ 8rkc oM, (3.6)

cannot be devived from a variational principle.

Nevertheless, Eqgs. (3.1) and (3. 6) lead to distinctly
different physical conclusions, which are best illustrated
by the following special case. Let us suppose that our
metric is represented by a spherically symmetric line
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element

ds® == (e*dr* + 72 d0* + 7 sin’0d?) +cte¥ dt®,  (3.7)

with A =(r), v=v(r), and that a static electromagnetic
field is given, whose Clebsch representation is charac-
terized by

Uo =0, Py=1iV{r), ¢o=0, ¢,=iU(r). (3.8)

Under these circumstances the Maxwell equations (1. 4)
imply? that the derivatives of V and U are given by

V' =ertexpl( +v)/2], U'=wr?expl(x +v)/2], (3.9)

where € and ¥ are constants of integration, which are
interpreted as the electric and magnetic charge re-
spectively of the gravitating mass which gives rise to
the metric (3. 7)., These deductions are independent of
the choice of the energy—momentum tensor, Also, for
the field (3. 8) the electromagnetic field tensor assumes
the form

0 0 0 - ie?V’
pi_[ O 0 gt W sin®eU 0
h— 0 _g-i /ZTZU' 0 0 ’
eV’ 0 0 0
(3.10)

and it may be verified with the aid of (3.9) that, under
these circumstances,

T =3¢ - yhg! Wt diagl- 1,1,1, - 1], 3.11)
while
0l =3¢t +92)gt -t djag[-1,1,1, - 1], (3.12)

where diagla, b, ¢, d] denotes the 4X 4 diagonal matrix
with (ordered) diagonal entries a, b, ¢,d. When (3.11) is
substituted in the field equation (3.1), the resulting
solution is given by

e’ =e=1=2m/r + {dux/crt) e =17, (3.13)
where » is a constant of integration which is identified
as usual with the mass of the gravitating body. How-
ever, as a result of (3.12), it is found that the corre-
sponding solution of the alternative field equation (3. 6)
is given by

e’ =er=1-2m/r + dux/c*v?) (e +77), (3.14)
thus predicting a different effect of the magnetic charge
on the gravitational field, It is remarkable that the
generalized Reissner—Nordstrom metric generated by
(3.14) is identical with a line element postulated very
recently by Adler, 10 who showed that such metrics ex-
hibit some physically significant features, particularly
with regard to the quantization of charge and angular
momentum. Clearly the ultimate choice between the
field equations (3.1) and (3. 6) must await further
developments.
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On the macroscopic equivalence of descriptions of
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Three descriptions of spontaneous fluctuations in macroscopic systems have been proposed: One uses
generalized Fokker—Planck equations and treats fluctuations as a stochastic diffusion process; another uses
a connection between fluctuations and dissipation and generalizes the Langevin method; the third is the
master equation theory which treats fluctuations as arising from a birth and death process. For a variety of
systems it is known that the master equation theory is identical to the fluctuation—dissipation theory in the
macroscopic limit. For chemical reactions it is shown here that the appropriate diffusion process also
becomes identical with the fluctuation-dissipation theory in the macroscopic limit.

I. INTRODUCTION

The random fluctuation of a particle undergoing
Brownian motion can be described in a variety of ways.
The earliest description was the diffusion equation
approach of Einstein' and Smoluchowski,? which lead to
the more complete Fokker—Planck description.? A
second way of describing Brownian motion is the fluc-
tuating force approach of Langevin* and Ornstein—
Uhlenbeck.® Finally the use of the urn models® provides
a description of Brownian motion as a birth and death
process. Although each of these descriptions of sponta-
neous fluctuations has a different mathematical struc-
ture, all three methods are equivalent when applied
near equilibrium.”’

Recently these approaches for describing Brownian
motion have been generalized so as to apply to fluctua-
tions for a wide variety of macroscopic variables.
Generalized Fokker—Planck equations, which describe
a stochastic diffusion process, have been introduced to
describe fluctuations in optical systems.® A generaliza-
tion of the Langevin approach based on a connection
between fluctuations and dissipation has been used to
describe fluctuations associated with macroscopic
transport equations. >'° Finally the master equation
theory, which generalizes the urn model, has been used
to describe fluctuations in a number of physical pro-
cesses.'!''? All three theories purport to describe
spontaneous fluctuations and are based on the form of
the transport equations. Since the transport equations
are valid only in the limit of large system, these theo-
ries are relevant only for describing fluctuations in the
macroscopic limit. As a consequence, it is only this
limit of these theories that is physically important.
Because none of the alternative theories has a clear
foundation in statistical mechanics, it is not possible to
say a priovi that one approach is more fundamental than
the others. On the other hand, it is the purpose of this
note to argue that all three theories are equivalent in the
macroscopic limit. In this sense, the three descriptions
of fluctuations are equally valid in the macroscopic do-
main, and the real test of their validity lies in compari-
son with experiment.

It is already known for a number of examples'®~'® that
the macroscopic limit of the master equation theory
coincides with the random force theory based on fluctua-
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tion—dissipation postulates. This correspondence shows
for a uniform system of coupled chemical reactions
that, in the limit of a large system, the conditional
probability density obtained from the birth and death
theory approaches the Gaussian form given by the fluc-
tuation—dissipation postulates. !*** The results below
show that a similar result holds for the conditional
probability for stochastic diffusion processes modeled
after the mass action law for chemical reactions.
Although only chemical reactions are explicitly consid-
ered here, the fact that macroscopic transport laws
have a canonical form similar to the mass action law, '¢
suggests that the correspondence is more general.

The outline of this work is as follows. First,
Fokker—Planck equations for a stochastic diffusion pro-
cess are introduced for chemical reactions and this
approach is compared to the fluctuating force theory
given by fluctuation—dissipation postulates. To motivate
the equivalence of these theories, the stationary equi-
librium distribution for the chemical reaction X +Y
=2X is obtained analytically for the two theories. These
distributions are different, but in the macroscopic limit
the diffusion theory approaches the Gaussian form ob-
tained from the fluctuation—dissipation postulates. It is
then shown how to systematically expand the Fokker—
Planck equations for the conditional probability of the
diffusion process in terms of the inverse volume, The
terms which survive the infinite volume limit yield the
equation solved by the Gaussian form obtained from the
fluctuation —dissipation postulates. Finally the mean
convergence of the two processes is proven. Estimates
of the validity of the approximate Gaussian solution
suggests that it is valid at typical densities and for
volumes containing more than a few thousand molecules.

ll. STOCHASTIC DIFFUSION PROCESSES FOR
REACTIONS

In this section a stochastic diffusion process is asso-
ciated with a system undergoing chemical reactions.
The system considered here is uniform at fixed tem-
perature and fixed volume and consists of % different
kinds of molecules —symbolically C,, C,,..., C,—
undergoing m distinct elementary chemical reactions.
In addition to being changed by the chemical reactions,
it is supposed that the number concentration, »;, of the
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molecule C; changes due to an external source, whose
strength K, is independent of all the »;. Thus the rate of
change of the number densities is given by the
expression

dny 3N (V- V) 4K,=V,(n,0) @)
d_/—a”u k™ Vi =V, 1),
where v, is the stoichiometric coefficient for C, in the
kth reaction. The forward and reverse rates of the kth
reaction are written as V; and are given by the mass
action law
13
Vi=K: T ;zi.ii, (1)
=1
where K, is the rate constant and /;; is the number of
C, molecules involved in the forward or reverse step of
the «th reaction. Since the variables »n; represent con-
centrations, the rates V, are independent of the volume
al fixed concenlrvalion.

To associate a stochastic diffusion process with the
reactions in Eq. (1) requires the specification of the
Kolomogorov forward (Fokker—Planck) equation for this
process. '® This equation is satisfied by all single time
probability densities, W(n,/), where

W(n, {)dn =probability of number densities in the
interval dn around n at time /.

The Fokker-—Planck equation for the diffusion process
is taken to be

aW(n, t) + oVin, ) Win,/) 1 2%y, (n)Wn, /)
ot an;, 2 In on,

=0, (2)

In Eq. (2) the Einstein summation convention for re-
peated indices is used and
Y= 2 v (Vi+ Vv, , (3)

where £ is the volume of the system. The second term
in Eq. (2) is the drift term and it is natural that the
macroscopic rate function V, (n,/) appear there [cf. Egs.
(20) and (21) below]. The form of the diffusion matrix
y;;{n) in Eq. (3) is patterned after the terms which
cause fluctuations in the fluctuation—dissipation theo-
ry.'* Equations (1)—(3) complelely define the Mavkor
stochaslic process and defevmine W(n,!) once W(n,0)
is given. When the initial condition is perfectly sharp,
i.e., Win,0)=25(n-n’, the solution to Eq. (2) is the
conditional probability density, P,(n°in/).

An entirely different description of fluctuations a for
chemical reaction is given by the fluctuation—dissipation

theory. ®*° In that theory the conditional probability can
be shown to be the Gaussian®

P'(n°[nt) = ((27)*deto(n®, 1))/?
xexp[- % (n-1(n°, )70 (n°, £)(n - n(n°, ¢))], {4)

where the superscript /d denotes the fluctuation—dissi-
pation theory result. In Eq. (4) the conditional average
is n(n°, ¢} and is found by solving the deterministic Eq.
(1) subject to the condition n{n°, 0)==n°. The conditional
covariance matrix is®'°

a(n®, f) = fO'Pexp[— f:H(nO, 7)d7]v(n°, s)
x (Pexp|— ‘[‘:H(n",r)dT})Tds (5)
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with Pexp the time ordered exponential, '? the matrix
H1is

3V an®, 1), 1)
o,

Hoyw,0)= (6)

and y(n°, s)=y(n(n° s)).

The conditional probability in Eq. (4) results from the
fluctuation —dissipation postulates which assert'® (i) that
the conditional average satisfies Eq. (1) and (ii) that de-
viations from the conditional average, én=n-n(n°, /),
solve the stochastic differential equation

don

4 e, yon +0), ™

where (£{¢)) =0 and
<f~,(l)f,-(8)> =v,; {0, 1) 6(/ —s), (8)
with y obtained from Eq. (3), and f(/) is Gaussian.

Actually the diffusion process satisfying the Fokker—
Planck equation (2) can also be associated with a sto-
chastic differential equation, although this equation is
different from Eq. (7). Indeed every stochastic diffu-
sion is generated by an It6 stochastic differential equa-
tion.'” For Eq. (2) the associated It6 equations are

dn;=V,n,0dl +g,,n)dw,, 9)

where the w; are independent Wiener processes and the
matrix g is the square root of y, i.e,,

(10)

As is known, ®''® this simple correspondence between

a stochastic diffusion and a stochastic differential equa-
tion does not hold true if one chooses Stratonovich’s
definition of the stochastic integral; however, this
correspondence is generally true when It0’s definition
is used. Since, loosely speaking, dwj/dl is white noise,
the form of Egs. (9) and (10) suggests a similarity be-
tween the diffusion process and the fluctuation—dissipa-
tion process. They are no/, however, identical since
Egs. (7) and (8) imply the Gaussian conditional density
in Eq. (4) whereas Eqs. (9) and (10) give a Gaussian
form only in the limit of a large system. Furthermore
a diffusion process is a Markov process, '® whereas the
Gaussian conditional density in Eq. (4) is known not to
satisfy the Smoluchowski equation as an identity** and
so it is not a Markov process. These distinctions will
be clarified in the following sections.

g,»j(n)‘%’jk(n) = viln).

Another similarity between the diffusion process and
the fluctuation—dissipation process can be seen by
calculating the time derivative of P using Eqs. (1),
{4), and (5). It is verified, after a short calculation,
that p™(8n, () = P{*(n°in¢) satisfies

apf’l GIIJ»PM l 82}'/ij(ﬁ(n0’ /))Pfd =0
Y] Aon, 2 Abn 2 0n; )

+aH  (fi(n°, /)

(11

with P(6n, 0)= 5(6n) and 6n; = n,—#,@" {). Equation
(11) is closely related to the Fokker—Planck equation
{2) for the diffusion process. An important difference is
that the drift and diffusion terms in Eq. (11) depend on
time and the initial condition. As a consequence an un-
conditional density, W/n,/), for a fluctuation-—dissipa-
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tion process does not identically satisfy an equation
like Eq. (2).

What is shown in Sec. IV is that the conditional den-
sity for the diffusion process satisfies Eq. (11) asymp-
totically as the volume of the system gets large.
Furthermore it is shown that the conditional density for
the diffusion actually converges (/) to the Gaussian
density of the fluctuation—dissipation process. In this
sense the two descriptions of fluctuations become iden-
tical in the macroscopic limit,

Hi. AN EXAMPLE

To motivate the macroscopic equivalence of the pro-
cesses generated by the Fokker~Planck equation (2) and
the fluctuation—dissipation postulates, the equivalence
of the equilibrium distributions is demonstrated for a
simple example. Consider the chemical reaction

X+Y=2X

with K" =K ==1, If no external sources are present,
then », +#,=n=const, and Eq. (1) simplifies to

dn,
dl

=nn—n)~. (12)
Only fluctuations in », need be considered since on,
2. — by, and so Eq. (3) becomes

y) =82 n(n~n) +n%|=Q " un,, (13)

where $ is the volume. For the single independent vari-
able #,, the Fokker—Planck equation (2) becomes

aw + an,(n —2n )W 1 2%Q W
ol an 2 ot -

X

0. (14)

The difficulty in solving Eq. (14) is evident because of
the nonconstant coefficients. However, an exact solution
for the equilibrium density can be found since the equi-
librium density solves '

Andn =20 )W n n W (15)

—
N, 2Q  ang

Equation (15) can be integrated twice in a straightfor-
ward fashion to yield

Wn ) = (QA /un,) exp[-29Qn, —n°) /n]

N n 1/2 no =M, P
X[l +B(n/2Q)1/z ./0(29/ ) (n€ ")exp(ye)d\’]a

The superscript “d” denotes the result for the diffusion
process, A and B are constants, and #°=n/2 is the
equilibrium value of »#,. In order that the density can be
normalized, the singularity at »,=0 is removed by
setting®®

o 1yl 2ne
B(n/2Q) /2% - f 26/ exp(y®) dy.

Thus the equilibriurhodensity for the diffusion process is
Win,) = (W°/n,) expl-2Qn, —n)*/n|

20 /m 2 oy :
j (2Q/n) (n€ )eXp(vz)dV/f

20 /mt /2 e
% (1 - "
<0 Q

xexp(y?) dy) (16)
with W° a normalization constant.

For comparison, the equilibrium density for this
reaction can be gotten from the fluctuation—dissipation
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postulates by taking the limit / — < in Eq. (4). Accord-
ing to previous work,? this gives

W n,) = (mn/22) /2 exp[- 2Q(n, —n¢) /n]. 1

The expressions for the equilibrium probability densi-
ties in Egs. (16) and (17) are exact for the diffusion and
fluctuation—dissipation processes and for arbitrary Q
and » are obviously not the same, However, it is easy
to see that in the limit & — « with » fixed, the density
in Eq. (16) approaches the Gaussian form in Eq. (17).
This follows since 0< {n, —~n?] <n? so thatas Q-
with » fixed, the integral ratio in Eq. (16) vanishes
unless #,=0 or #. Also in this limit the density W*{(x,)
becomes sharply peaked around #° and so has as a
limiting form the Gaussian in Eq, (17).

Incidentally, it is easy to check, for this example,
that the birth and death process associated with this
reaction'® is different from these two stochastic pro-
cess. Using standard results,®° the birth and death
theory gives a binomial distribution for the equilibrium
probability that the nurmaber of X molecules is N,, i.e.,

WPHN ) =N 2Y(N-N)IN_!, (18)

where #n=N/Q and n,=N,/Q. This result is different
from both Eq. (18) and Eq. (17), but according to the
Laplace—De Moivre central limit theorem, ?' the fluc-
tuation—dissipation result in Eq. (17) is recovered in
the limit 2 — « with » and »_ fixed.

IV. THE LIMIT Q >

The example of the previous section can be general-
ized by looking at the conditional probability densities
for the diffusion process in Eq. (2). Although Eq. (2)
cannot be solved directly, the fact that the diffusion
term vanishes in the limit € —~ * permits the introduc-
tion of systematic approximations which allow the
asymptotic density to be obtained for delta-function
initial distributions.

The complete Fokker--Planck equation for the condi-
tional density Pi(n°In/) for the diffusion process in
Sec. Il is

Py  AViPL 1 ¥y, Pl

ol omn; 2 angon;

Pi(n°|no) = 6(n = n°).

’

(19)

To clarify the expansion which follows, the literal
limit €~ « is taken on both sides of Eq. (19). Since
Eq. (3) shows that v, is proportional to ™, and V, is
volume independent, this gives for P;=lim,_.P;

2P? L2V -0,
al an;

Pi(n° |n0) = 8(n —n°).

(20)

In this equation only a drift term remains and the unique
solution to Eq. (20) is the delta function

Pi(n°|nt) = 6(n —n(n®, 1)), 21)

where n(n°, /) is the deterministic solution to the rate
Eq. (1). Thus to lowest order in 7', the solution is
perpetually sharp around the deterministic solution.
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The persistence of a sharp deterministic solution in
the infinite volume limit suggests that the asymptotic
form of the probability density can be obtained by look-
ing at the deviations around the deterministic solution,
on,=n; —n,(n° ). These deviations are small, and a
proper scaling is required to see their distribution in
the limit that £ — «, The usual central limit theorem
type scaling, on;=Q"/%,, is appropriate. This leads
to the Taylor expansions for the streaming and diffusion
terms,

K i’y :
Vi, 0=V BE°,0),0 +2; Vit g, g, 875 (22)
X .
7u@) =vL@, 0, T+ 2 VLT g, QT
(23)

The volume dependence of y [see Eq. (3)] has been made
explicit in Eq. (23) by writing y,;=7},2", the overbars
represent evaluation at n, and the superscripts repre-
sent partial derivatives. For the mass action laws in
Eq. (1’) these expansions terminate at some small
integer K which represents the highest order of the
reaction occurring. In realistic examples K is no larger
than 3.

The density of the scaled variables q is
PYq, )= PI(n°|n(n°, 1) +Q7/2q, 1).

The equation solved by this function can be gotten from
Eq. (19) and the identity

_.__an = apd ?fdz 112_5: 3pd = V(— 02,
at ~ at  om, dt Al aq,
(24)

Substituting this result and the Taylor expansions in
Eq. (19) yields

P!

a_ +93 Viqj +Z Vll,...,jkqjl, q Q(l-k)/z P/

r1q; 27"? PY3q,0q,=0.

(25)

As long as g, stays the order of unity in , this is a
systematic expansion of the differential equation into
powers of 27'/2, Only the first terms inside the deriva-
tives survive the limit £ —~ « and asymptotically the
equation becomes

9Pt aviq,Pd _13%LP
ot oq, T2 8904,

Returning now to the unscaled variables 0,
ing equation becomes

aP" 6
S o, 0) B

P%(5n,0) = 5(6n),

the limit-

_12%,(Amn, )P
2 a0n,0 n,

=0,
(26)

where the identity Vj=H,,M(n%¢)) has been used. Equa-
tion (26} is identical to Eq. (11), which is the equation
solved by P{*(n°int), the conditional density obtained
from the fluctuation—dissipation postulates, Thus the
uniqlze)solution to Eq. (26) is the Gaussian density in
Eq. (4).
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Although these considerations are suggestive, they
do not really constitute a derivation of the limiting
equivalence of the stochastic diffusion in Egs. {1)—(3)
and the fluctuation—dissipation process in Egs. (7) and
(8). The difficulty is in justifying the neglect of the
higher order terms in ¢,. An identical problem arises in
van Kampen’s expansion'’ which has been used to treat
the §2 — « limit of master equations. %' In both cases
what is needed is a proof that the coefficient of Q7*/2 in
Eq. (25) is of order 2*1/? or smaller. Although this
problem has been ignored in most treatments of master
equations,'! the expansion procedure is justified by
Kurtz’s work.'® For the diffusion process introduced
here, this problem is confronted in the following
section.

V. A LIMIT THEOREM

The derivation of the 2 — « limit in the previous sec-
tion suffers from the limitation that the coefficients of
the powers of 27/2 in Eq. (25) have not been shown to be
of negligible order. On the other hand, it is easy to
show that these terms are neglegible for the Gaussian
solution which results from this assumption. Conse-
quently the neglect of these terms is at least self-con-
sistent. Actually more than this is true, and the mean
convergence of the exact solution to the Gaussian solu-
tion is shown below,

The results in this section are based on the following
[, estimate of the difference between the exact solution
to the Fokker—Planck equation (19), P3, and the
Gaussian P§? which is derived in the Appendix:

| P4(t) - P§A(e)l| = [ | PAn® |nt) - P{2(n°|nt) | dn
< [ldr [an|Lg P{e®|a7)], (27)

where 0<¢< T and L, is the differential operator in-
volving the higher order terms in Eq. (24), i.e.,

. énjk -)/8711.
.énjk.)/mianj. (28)

E( E Vfly....fkﬁnjl .

1 2K —Jrees fk6
...5 d kEﬂ‘yij njl..

The inequality in Eq. (27) can be used to show that
the Gaussian density P{? remains a good approximation
to P2 for appreciable times if the volume is large. To
see this, the integrals over concentration n are written
out more completely taking advantage of the exac!
scaling 6n;=Q™/% for the Gaussian solution, i.e.,
from Egs. (3) and (5), o(n°, /) Q"!, This variable
change gives

fanLRP£d|
K
Tl 1reeerd e
- i, o

K )
* (az Vg 'qij'k/ZPﬂ(q))/aqaaq'{,
W 29)

where P'(q) is the Gaussian density resulting from Eq.
(4) for the change of variable n, -7, =Q™/?g . Because
o(n’, ) is proportional to ™, PU(q) is independent of Q.
Since neither the derivatives of V or y* depend on 2,
this explicitly shows that the right-hand side of Eq. (27)
is no greater than order 27'/2, Equation (29) also shows
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that the coefficients of /% are bounded above by
Gaussian moment integrals over positive values of q
and so are finite as long as o(n® ¢) is invertible. Thus
Eq. (27) can be written as

PO - PEON <3 [ 1) dra, (30)

where the form of the integrals 1,(7) can be obtained
from the moment expressions discussed above. If these
integrals are finite, then for fixed 7 the right-hand side
vanishes as @ — «, The finiteness of these time inter-
grals is quaranteed by Eq, (5) which shows that at short
times o(n°, 7)c 7, Hence a scaling argument using

g, 7'/% for short times shows that (7)< 7'/ with 7 an
integer no smaller than - 1. This means that all the
time integrals in Eq. (30) are finite because the only
potential singularity is at / =0 {where o vanishes) if
dynamical constraints among the variables have been
removed.

These considerations establish the following result:
Fix the initial state n°. Then given any T >0,

})igllpg(/) - P(1)11 =0, (31)

for all 0=/ < T. With this mean sense of convergence,
the stochastic diffusion process and the fluctuation—
dissipation process become identical in the macroscopic
limit.

VI. ERROR ESTIMATES

The preceding limit theorem is useful for obtaining
error estimates. A simple illustration is provided by
the second order reaction X+ Y= 2X of Sec. III. For
this reaction the remainder operator Ly is first evalu-
ated and found to be

3(0n,)? - 1 32 nbn, -
an, 2 onl

Ly =-2 (32)
Using the properties of the Gaussian solution P{%(n21n/)
[see Eqs. (4) and (5)], the inequality in Eq. (27)
becomes

1Py = PRI < [T (16[0°(7) /2] /2
+5n/[202°0%(7) /2 ) d7 (33)

for all 0<t< T, where 0°(7)=0(nl, 7) as defined in Eq.
(5). For small 7, Eq. (3) gives ¢°(7) =y(n))T so that the
second integral on the right-hand side of Eq. (33) is
finite. Furthermore o°(7}x ™, so that the right-hand
side of Eq, (33) is proportional to /%, which is an
example of the expansion in Eq, (30).

Although it would be possible to use the explicit ex-
pression for o%(7) to obtain an estimate in Eq. (33), a
different property of the reaction will be used, For the
reaction in Eq. (12), as ¢ gets large the variance
approaches that of the equilibrium distribution,®i.e.,
lim,. .0%) = 0°=x/4Q. Thus for T large enough, Eq.
(33) implies that

| PA(t) = L)l < T(16(0¢/27)" 2 +5n/(2780%0°)! /?)
<9T(n/Q)"/? (34)

for 0< (< T, Since the probability densities PJ! and P}
are normalized to unity, Eq. (34) suggests that for a
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given T, a criterion for the validity of the Gaussian
approximation is

9T(n/Q) /2«1, (35)

If T is scaled in terms of “relaxation times,” 7,
=1aV/andl = |n —4n8l T, then T=N,7,. Thus the crite-
rion in Eq. {35) can be expressed in terms of N,, the
number of elapsed relaxation times, as

N, << (n)1/2/3. (36)

Now #§? is just the number of molecules in the volume
€, so Eq. {(36) asserts that the solution to the diffusion
equation will agree with the fluctuation~dissipation
postulates as long as the number of half-lives elapsed
is much smaller than the square root of the number of
molecules in the volume. For example, if a volume
contains as few as 10000 molecules, then the Gaussian
approximation would hold for at least five half-lives.
However, equilibrium is essentially complete within
five half-lives, so even for such a small system the
agreement between the diffusion process and the fluc-
tuation—dissipation process persists effectively forever,

ACKNOWLEDGMENTS

The author would like to thank Professor Robert Mazo
for drawing his attention to Graham’s work and the
National Science Foundation for research support
through Research Grant No, CHE 74-00483 A03.

APPENDIX

In order to obtain the estimate in Eq. (2}, notice that
PY(nCint) satisfies Eq. (19) and that P}(n°(n/) satisfies
Eq. (26). Consequently, using Eq. (24), their difference
A =P P* can be shown to satisfy the partial differ-
ential equation

2
e -y S =Ll
A(n°In0)=0, (A1)
where
; ._ 3R _1 3Ry
R on, 2 on;on; ’
R,=V,n,) - VA, 1), - H {0, 1))on, , (A2)

R ;=vn) -y, @@, ).

The solution to Eq. (Al) involves the Green’s function

Pl(n’In!) and is
A@®in) = - fo’ dr [dn’' Pin’|nl - )L P'(n°|n'7),

(A3)

as can be verified by differentiation. Since P;(n’Inf) is
positive and a normalized probability density, Eq. (A3)

leads directly to
I PLs) - PEYOI = [] a(n®|nt)|dn
st’ d7 [dn' |LyPfn®|n'7)|
<[lar [an | L Pf'(n°|n'7)|

(A4)

for all 0 < /< T, since the integrand of the time integral
is nonnegative,
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For infinite classical dynamical systems, satisfying the KMS condition, relations between asymptofic
dispersive and cluster properties are proved. The local structure of the algebra of observables is explicitly
characterized by the Poisson bracket commutant, and it is proved that the algebra of observables at

infinity are constants of the motion.

1. INTRODUCTION

As in Ref. 1,2, and 3, we describe an infinite clas-
sical dynamical system by a triplet ¥ =(#, w, a;) where
A is an algebra of bounded functions on the phase space
K, w a state on/, and «, stands for the time evolution.
(For exact definitions see Sec. 2.)

This work consists of two parts. The first was moti-
vated by Ref. 3 where the classical KMS condition is
derived from a notion of stability under some conditions
of clustering and dispersiveness. In particular we study
some properties of what we call asymptotic dispersive-
ness in accordance with the notion introduced in Ref.

3. It corresponds to asymptotic abelianess in the quan-
tum case. In comparison with the quantal asymptotic
abelianess where the commutator [A, B,] of some ob-
servables A and B, is studied, in the classical case we
have to consider the Poisson bracket {f, g;} of the ob-
servables f and g, for large times {. The essential dif-
ference is that the commutator is a bounded linear map
on the algebra of bounded observables, but the Poisson
bracket an unbounded one. In Ref. 2, respectively Ref.
3, it is assumed that the pair (K, w) is a Lebesgue
space and that the Poisson bracket of any pair of ob-
servables is L,, respectively L,. We give a purely al-
gebraic description of the classical KMS condition,

i.e., at no place do we refer to the time evolution as

to be induced by a flow on the phase space. It was done
in this way, because we study only properties following
from the algebraic structure. It is indicated how it is
related to Refs. 2 and 3. The main result of Sec. 3 is
the link between cluster properties and asymptotic dis-
persiveness for classical KMS states, due to the self-
adjointness of the Liouville operator. This result makes
it possible to translate these properties in terms of
properties on the spectrum of the time evolution. In the
second part, Sec. 4, we consider in detail the local
structure of /. This enables us to introduce the algebra
of observables at infinity? which should correspond to
the center of the von Neumann algebra for the represen-
tation induced by the state, at least for locally normal
states in the quantum case. We give, as far as the alge-
bra A is concerned, an explicit construction of the
Poisson bracket commutant of a local algebra. To ex-
tend this property to the weak closures, i.e., to de-
velop a more complete “von Neumann algebra”-like
theory with respect to the Poisson bracket, another
condition is needed, again because of the unboundedness
of this operation. Finally we prove that, as in the quan-
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tum case, the observables at infinity are all constants
of the motion.

2. PRELIMINARIES

Let K be the set of sequences in R?XR? with de N,
i.e., xe K; x(d) =(q;, p;) € R subject to the locality
condition lim;..lg;! = and such that ¢;#q; if i #j.

Denote by K the equivalence classes of such mappings,
two mappings being equivalent if they differ only by a
permutation, We call X the set of configurations.

Denote by A the algebra of (unbounded) observables
consisting of functions 7:K — R which are described by
a sequence (™) of C” functions /™ : (R*XR)™ -~ R
which are symmetric, have compact support and with
a finite number of components f‘™’ different from zero.

Then for any xc K and fe A
=2 0 %k

m=0i1<r e <ipy

Eééywwm.

Denote by 4 the complex *-algebra of bounded local
observables as the algebra generated Ly the real-valued
functions ¢ on K of the form

G () = ¥(A(0)),

where fe A and ¥ is a bounded C~ function from R to
R, with all derivatives bounded.

; x; )

ipr sy iy

A state w is, as usual, a normalized positive linear
functional on the involutive algebra 4 with unit, the
unit constant on X.

Denote by { -, -} the bilinear map from 4 x4 into the
unbounded functions on K, for all ¥, & ¢4

—~ 3V 3d . Y 3d,
T T

with (2/3¢;)(2/8p;) the scalar product of the gradients.
Let 7, be the GNS representation of A into the linear
operators on/,, induced by a state w; let Q, be the
cyclic vector, and ¢ the canonical embedding of A into

He

Definition 2.1 Let 4, be the real part of #, then we
call the state w admissible if there exists a set/) in
A, such that ¢()) is dense in ¢(A4,) and for all f, gc/),

lim @ <exp(z k[.f, g - 1)
A~0 2
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exists. We denote this limit by w({f, g}). It is clear that
w{-,-1) is a bilinear form on/). By linearity we extend

itto& =D +i.

In Refs. 2 and 3 where //, is taken to be L,(K, w), it
was assumed that for all f, geA, {f, gte LiK, w). K
now f, g€ A,, then

Xp(l.)\{f, g}) -1 < 5
?‘—‘T‘—“ < |{f, gt

and hence by the bounded convergence theorem, if
{f,gte LiK, ), then

f{f, g}dwzlliyol (5@@%’—5}—)"—1)@.

This motivates Definition 2. 1.

If furthermore 7, g€A, {7, gt € LK, w) as in Ref. 3,
then, as for f,gc 4,,

exp(ih{f) g}) - 1_{]:’ g} 2

Y <4l{r, g%

again by the bounded convergence theorem

N _
@(l—%g—}L—l- converges to {f, g} in LK, w).
This suggests another way of defining w({f, g}). Suppose

that f, g</), the sequence

nolexp((i/nlf, gD -1], neN

is Cauchy. Then define ¢({/, g}) by

o f, gp) = - i limno[exp(G/n] f, g}) - 1]

n= =

and

The advantage of this is that it identifies { 7, g} with an
element of #,. In this work we only use Definition 2. 1,
which is implied by the ones in Refs. 2 and 3.

Definition 2.2: We call the one-parameter group
(@);cm of x-automorphisms of 4, a time evolution of
the physical system (4, w) if there exists a strongly
continuous group of unitaries (U,),cg on/#, such that
(@, ) = U,n(HU_,. Furthermore we suppose:

(1) if L is the infinitesimal generator of U,, i.e.,
U, = expit/ then the domain of /, denoted by (/) con-
tains ¢(4)

(ii) the subset & of 4 is invariant under a,
(iii) o, leaves w invariant, i.e., w- oy =w.

It must be realized that most realistic time evolutions
are not described by automorphisms of this algebra,
but of a larger one. The content of Sec. 3 is however
independent of the choice of the algebra.

Motivated by the conditions of the main theorem of
Ref. 3, we now introduce the following notions: Let ¥
={4, w, @,) be any dynamical classical system, where
A is the algebra as defined above, w an admissible
state, and o, satisfies definition 2. 2.
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Definition 2. 3: The dynamical system Y is called

(i) weakly asymptotic dispersive, if for all f, g&é
T

lim —:-l—

lim 5o ) wllen(), g dt =0,

(i) absolutely weakly asymptotic dispersive if for
all /,geé

T
timge [ oantn, eblar=o,

and
(iii) strongly asymptotic dispersive if for all f, g ¢
llim wla,(n, gh =0.
te]ew
It is easily seen that (iii) implies (ii), which implies
(1).

Definition 2. 4: The dynamical system Y is called,
weakly clustering if for all f, g/

1;2517—, /: w(a (N dt = w(NHwlg),

absolutely weakly clustering if for all f, g A

1‘1m~1~
T<w2T

T
dt | w(a,(Ng) - w(Hwlg)| =0,
T
and strongly clustering if for all f, g ¢
lim w(a,(Ng) = w(Hw(g).
TS

Definition 2.5: Let Y=(4, w, @;) be as above, then
the classical dynamical system is said to satisfy the
KMS condition at inverse temperature 8 > 0, if for all
f,gcé and all fc R, Y satisfies

d
B(}?‘U(fa’tk’) =-w(/, a,2}).
In the following we put 8=1.

3. DISPERSIVENESS

The main result in the following theorem is the rela-
tion between clustering and dispersive properties of
KMS states. Denote by E; the orthogonal projection on
the U, invariant subspace of /.

Theovem 3.1: If Y is a KMS system then
(i) Y is weakly asymptotic dispersive;

(ii) if Y is strongly clustering, respectively absolutely
weakly clustering, then Y is strongly asymptotic dis-
persive, respectively absolutely weakly asymptotic
dispersive. I, in addition E is one-dimensional, then
also the converse holds.

Proof: (i) Using the KMS condition and the invariance
of wfor f,ge &,

wla,(Pgh) =~ il 1(N*Q, U.,7(2)%).
Let us denote

T
MAE)) = i”’iz‘% f . ) dt.

Then®
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ML aA*Q, Usr(€)Q)
={{ 1(N*Q, Eu(g)Q).

As [ E,=0 (i) follows.
Now we prove (ii): Suppose first that Y is strongly
clustering, i.e., for all f, g A,

Lim (7(N*Q, U, 7()Q) = (7(H*Q, QN(L, 1(2)Q).

Pe) o

Since © is cyclic for 74) we have for all ¢, dc 4,

lim (¢, Ud) = (¢, Q(Q, 3).

(£~

Take ¢ equal to [ 7(f}*Q and ¢ equal to m(g)Q with f and
gin ¢, then

lim (£ 7(N*Q, U,1()Q) =0

1] -

which, using the KMS condition, is equivalent with

tim w{/f, o,¢) =0
1=

Similarly if ¥ is absolutely weakly clustering then it is
absolutely weakly dispersive

Suppose now that £ is one-dimensional and that Y is
strongly asymptotic dispersive; then again using the
KMS condition, this is equivalent to, for all f and g in

é,
lim (/. #{H*Q, U,7(2)Q) =0,

18] = e
Let N(/ ) be the kernel of / . Since [ is self-adjoint
N({) is closed and V() =R (L) where R (/) is the
range of [ (see Ref. 6, p. 267). Therefore, N ()"
=R({).
Let ¥ ML) and ¢ = 4,,. Since ¢(&) is dense inH,

for all € =0, there exists a g= ¢ such that

o — a(@ll < «/3Nl.
As R (L) is dense in VL), there is an element ¢’ ¢/ (/)
such that

=L ']l = e/3lm(g)Qll.
Finally, there exists an fc ¢ such that

" ~ w(HQll< /3L m(@Qll.

Therefore,

[, U0l < [ (N9, U@
+ (), U,0) = (L 1(NQ, Un(9)Q)|
< (L 7N, Um0

+ [, U) = (0, U9 |
+ (@, Uym(@Q) - (L7, Upn() Q)|
+1@, UL 1(@)Q) - (1N, UL 1)) |
<[ (AR, U@ + €.
As this is true for any € ™ 0 uniformly in f we get

lim (¢, U,¢) =0 for all ye (L) and ¢ cH,.

Ll -
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Now let ¢ and ¢’ be arbitrary in 4, since E, is one-
dimensional,

o= (@, )N
Therefore,

lm (¢,— (Q, ¢ ,)Q’ Utd)) =0,

by
i.e.,

lim (¢ ,, (Ich‘)) = ((p ,) Q)(Qy ¢)

Tt~
which is equivalent with Y being strongly clustering.
Similarly, if E, is one-dimensional and Y is absolute-

ly weakly asymptotic dispersive then it is absolutely
weakly clustering. Q.E.D.

For quantum systems the implications of cluster
properties on the spectrum of the Hamiltonian have been
studied before.” As a consequence of Theorem 3,1 we
are in a position to make analogous statements about
the relation hetween dispersiveness and the spectrum
properties of the operator /. However, as the proof of
Ref. 7, Lemma II. 2.1 seems unclear to us we give an
alternative proof, consisting mainly of a different proof
of the following lemma.

Lemma 3,2: Let U be a unitary operator on a Hilbert
space /7 and V=U® U* a unitary on 5 € #; let Q be an
eigenvector of U such that UQ = Q, then Q is the unique
eigenvector of U if and only if Q% Q is the only invariant
vector of Vin/A /.

Proof: (a) I Q% Q is the only invariant eigenvector
of V, then © is the only eigenvector of U since if Q’
#Q is another eigenvector such that UQ' =g, then
VR s @ = NP3 Q=0 % Q.

(b) Conversely, suppose that © is the only eigenvector
of U, Let T be the real linear isomorphism of 4/ & /{
onto the set of Hilbert—Schmidt operators on //, de-
fined by

T(x % v)z = (v, 2)x.
Then
T(V(x = v))z = T(Ux % U*y)z = (U*v, 2)Ux
= Uy, U2)y=UTx @ v)Uz
or
T(V(x ) = UT(x & 1)U,
By linearity and continuity for all £/ ®#
T(V(§)) = UT(§)U.

Suppose now that ¥ is a normalized invariant vector of
V, then

T(V) =T
or

UT(U = T(4).
Also

U T@*U* = T($)*

and therefore
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UTW) T@*U* = T T(%)*
or
(U, T T(W*]=0.

Therefore, the eigenspaces of T()T(y)* are also invari-
ant subspaces of U. Since it is trace class all its non-
zero eigenvalues are of finite multiplicity. Therefore,
T(¥)T(H)* has only one nonzero eigenvalue, which is
simple, as this is true for U. Since

TeT(PTP* =1,
it follows that
T T(W@)* = Eq,

where Ej is the orthogonal projection on . The lemma
is proved if we show that =Q® Q. Let {e;}, be an
orthonormal basis of / such that ¢,=$, then ¥ can be
put in the form

¢:29i®fi

for some sequence of vectors f; in //,. Now

TWTE)* =2, T(e; ® e)(f, f)

hence

(Q, T T(D*Q) = (fo, fo) = 1.
But

gl = 22017 1P =1,
Therefore,

fi=0 for alli#0

and ¥ =¢,9 f,= Q3 f,. But V¢ =1y yields Uf;=f;,, hence
fo=ey=9. Q.E.D.

Now we formulate the following theorem.

Theorem 3.3: Let Y=(4, w, ;) be a KMS system,
Then

(i) if E, is one~-dimensional, then Y is absolutely
weakly asymptotic dispersive if and only if zero is the
only discrete point of the spectrum of / .

(11) if E, is one-dimensional and if the spectral mea-
sure of / is absolutely continuous except for the vector
§?, then Y is strongly asymptotic dispersive.

(iii) if ¥ is strongly asymptotic dispersive then the
point spectrum of / is reduced to the point zero.

Pyoof: (i) By Theorem 3.1 absolutely weakly asymp-
totic dispersiveness is equivalent with absolutely weakly
clustering. As in Ref. 7 this is equivalent with

(@® Y, Fop ® ¢") =0

for all 3, ' cN(L); ¢, ¢'cH,, where F, is the ortho-
gonal projection on the invariant subspace of V, = U,
@ U¥f inH,8H, for all te R;

(i) follows now from Lemma 3. 2,

(ii) is immediate from Theorem 3.1 and Ref. 7,

(iii) by Theorem 3.1, Y is strongly asymptotic dis-
persive yields that for all ¥ c V(L) and ¢ € 4,
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lim (d}) Ut¢)) =0.

[El =<
Suppose that there exists a vector ¥ e/A(/ )" such that
U,p=exp(ixt)p where X#0. Then lim,, . (¢, exp(FAD)Y)
does not exist. Hence (iii) follows. Q.E.D.

4. LOCAL STRUCTURE AND OBSERVABLES
AT INFINITY

In the algebra of observables 4 we introduce a local
structure. For any bounded open set V in R?, define
the local algebra A, as the subalgebra of 4 generated
by the real valued functions  on K satisfying ¢ (x)
=G'{x} N (VXR?), where ¢’ is a function with domain
f{x}n (vxR* IxcK}. Then of course A =Upc piAy.

As usual* let Z be defined by

Zf:\m ﬂ(Av)”,
v
where
Av= U Ap
W(‘]V=0

and 7(4,)” is the von Neumann algebra generated by
7(A4,). Analogously we define Z’ by

Z’:r; 7(A%)”

where A¢ :{g cA Hg, F}=0for all FeAy}.
Lemma 4.1: With the notations of above, 4% =A.
Pyoof: For simplicity we give the proof for V a con-

nected set, but the argument holds for a general open
V.

Let ¢ be an element of AS. The subset of (VXRY)"
defined by the condition ¢; #¢; for i #; is not connected.
Let D be any connected component which is open.

Let x €K such that ¥ (VXR?) =¢ and let F, be the
complex-valued function on D defined by
Fx(qu pl; ey lpy /)n) = ¢({((]ly l)l)y ceey ((]n/)n)}u X)'

Take any ((¢1, p1), - . -, (g00) € D; there are open sub-
sets Vi, V, of R® such that ¢y € Vy, ¢; ¢ V; for 7#1 and
ViCV, also p;c V,. Let g be a real C~ function with
support in V3 X V,.

Choose ¥ a bounded C” function from IR to IR such
that ¥'(g{qy, p1)) =1 where ¢’ is the derivative of ¢ and
define ¢ an element of A, by

G =D
for all ve K. Since G €Ay we have {gb,g} =0. Hence

O:{(b, g}({((h: pl)’ sy (([m [’,.)}u ,\')

oF og
=" (glgip1)) [E(ﬁ (g, p1)s - v, (g Pn))a-;'; {q1p1)

a
- S (i) o) ]

If g is chosen such that dg(qy, p1)/3qy =0 and 3g(qy, p1)/
Opr=10y for I=1,...,d in turn, then

aF, .
aq‘ ((Q1P1), ey (Qrpn)) =0.
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Similarly

oF,
. (qp1), . .., (gp)) =0.

By repeating the argument 3F,/3q; =3F,/3p, =0 on D,
Vi, i=1,...,n.

Therefore, F, is constant on D and letting the p;’s
tend to infinity, gives F,=¢(x). Hence for any x K,

() =p(xn C(V)XRY)
and by continuity
p(x)=¢(xn C(MXRY),

Since ¢ €A there is a V' C R’ such that ¢(x) =¢’(xn V'
XRY for some function ¢’. Therefore,

¢(%) = p(xn C(NXRY
=¢'(x N (V' nC(VNXRY
and
deAcF v cAy.
Theorem 4, 2: With the notations of above, Z =2,

Proof: Immediate from the definitions and Lemma
4.2, Q.E.D.

Finally we prove in the following theorem that, as in
the quantum case, the set of observables at infinity con-
sists of constants of the motion.

Theovem 4.3: ¥ Y=(A, w, a,) is a KMS system and
if
(i) the set {X € Z|x*Q, e (L)} is weakly dense in Z,
(ii) the set & NAy is dense in Ay,
then UXU_ =X forall X Z.

Proof: By condition (i) it is sufficient to prove that
UXU_, =X for all X< Z such that

x*Q, eO().
For any f and g in A

SR, VXU a(n9,)

174 —
= ;17 (Qw ’ UtXU-tW(gﬂQw)

==l X*Q,, la_(gM,).

As € is dense inA, for each € >0 there exists an ele-
ment k€ ¢ such that

gz(ncgmw, UXU_m(HR,)

< (L x*Q,, 1(R)Q,) | + €.
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Q.E.D.

Since k< £ there is a V such that keA(V). As X
& m(Ay)", by condition (ii) there exists an element !
in & NAy such that

L x*Q,, 1(R)Q,)| < [(Q, TOL 1()RQ,)] + €.

Hence

2 (@)%, UXU1(N2)

< 2€+ | (R, 1)L 7(k)R,) |

—2¢ + }—;;w(laf(k))l-r:o

=2¢+ | w{l, B}

by using the KMS condition at 7=0. Now w({Z, #}) =0
by Lemma 4.1 and the theorem follows. Q.E.D,

We note that the proof of Theorem 4.3 is performed
under the weaker KMS condition, namely the condition
at =0 or the so-called static KMS condition.

As in Ref. 4 for lattice systems, it can also be proved
that Z consisting of the multiples of the identity is equi-
valent to uniform clustering or, expressed otherwise, is
equivalent with short range correlations.
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We “solve” the Schrodinger equation for a system subject to random pulses, and show how to compute

ensemble averages of observables or their Laplace transforms.

1. INTRODUCTION

In this paper we show how to integrate the Schrddinger
equation of a system subject to random pulses, i.e., a
system described by a Schrddinger equation of the form

dy, =H{, dt +dV,b,, n=1, (1.1
where H is a time independent Hamiltonian and
av,=7, Veer, (dt). (1.2)
1

The operators V, are assumed to be random vari-
ables whose values are Hermitian operators (see
Bharucha-Reid!) for definitions of such notions). We
shall assume the V,’s to be independent and identically
distributed. We shall assume the T,’s to be the arrival
times of a Poisson process with parameter A, the T,’s
are also assumed to be independent of the V,’s. Also
€Tk(dt) is usually written as &(t - T,,)dt.

An equation like {1.1) can be useful for modeling the
effect of random environments on a system. It has al-
ready been used by Blume and Clausser [see Eq. (1)
in Ref. 2] to describe changes in line shape, but they
do not integrate it correctly. For more applications
see Chap. XI of Ref. 3. In the next section we show
how to integrate (1,1) and how to obtain averaged ex-
pected values of observables and their Laplace
transforms.

Let us briefly describe what is behind the calculations
leading to (2. 4) below. In probability theory (see Ref.
1) random variables are thought as functions on a
triple (@, 7, P), where  is called the sample space,
7 is a o-algebra of subsets of 2 whose elements are
called events and correspond to the questions we can
ask about the system, and P is a measure on 7 such
that P(Q) =1.

Also, integrals with respect to P are denoted by E,
i.e., [HdP=E(H), and are called mean (0v averaged)
values.

The following facts follow from our assumptions on
the V,’s and the 7,’s.

If we denote by /4 the Hilbert space associated with
our system and if g, ..., ¥, are arbitrary unit vectors
in#/, then for any kb <k, <...<pg,

E{| Vi, [ na) <+ Gl | Vi [ 00}

=Wl EVy | tot) - - - (1 | EVy | ). (1.3)
Also, P{Tyq— T, >t} =exp{~ M) and for any complex
measurable function f(#, ..., ¢,), the quantity
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B ATy, ..., T,); T,<t<T,;!is interpreted as the aver-
age value of ATy, ..., T,) over the set {T,<?<T,,}, and
the average value can be easily seen to be given by

t
Nexp(= M) [dt, [rdtyy o [Ran A, ). (1)

2. INTEGRATION OF (1.1)

Notice that dV, does not charge (T,, Tps), i.e.,
f(Tvakd)th =0, which implies that if T,<¢<T,, then

W(t) = exp[— tH(t - T)P(T, +)].

From Eq. (1.2) it follows that ¢,, =limg,, ;= ¢, for
all ¢, Now, integrating (1.1) over (T, - €, T, + €) and
letting € ~ 0, we obtain

WTy) = W Ty =) == iV, Ty =).

From this we see the reason for the ,_ in (1. 1),
namely, the instantaneous change in the state of the
system, caused by V, at /=T, depends on the state of
the system right before T, i.e., on ¥(T} ~).

From 3(f) =expliH{! - T,)¥(T:}] on T, < ¢ < T,, we ob-
tain, by letting f - Ty, ¥(Tyy =) =exp(— tH(T
- TJo(T,)]. We can conclude that if T, < ¢ < Ty,

¥(t) = expl— iH(t - T (1 - iV,) exp[— iH(T, ~ T,1)]
X(1=iV,y) o (1=iVy) expl= iHTy)d,,

and, introducing T;=0, I[Tkkaﬂ) the indicator function
of the interval [Ty, T,,;), we can write

s

[9(0)) =23 expl~ iH(t = T = iV,) -+ - (1= iVy)

k

X exp(- iHT) | Yo i1, 1h0)(8)

u

0
(2.1)

This solution differs considerably from Eq. (2) in
Ref. 2.

We just saw that right after a pulse the state of the
system is P(T,) =(1-iV,)¥(T, -). Therefore,
QT [ BTy =T, =) | (1 + VBT, =), i.e., the evolu-
tion in the presence of pulses does not conserve proba-
bility. This has nothing to do with randomness, and it is
entirely due to the nature of the time dependence of the
perturbation. We can attribute the nonconservation of
probability to the fact that a system in a time dependent
environment is only part of a larger system. It may
also be a defect of the model.
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At this point we should mention that if H were time
dependent, we would replace exp[- iH(t - T,)] by
=1 +

U(t, Ty) { L H()d

x [ TH(t) dtyy e [ H() dl

Tk-l)] by U(Tk, Tp.1).

Now, ¥(f) is a random variable defined on (&, 7, P)
and if 4 represents an observable, (§;1AlY,) is also a
random variable. By taking a basis for #/ it is very
easy to see, exchanging sums with integrals, that the
mean value of (¥, 1A |y,) satisfies

and analogously exp[~ iH(T, -

EQ@, | Ald,) =te(AE |0,)¢0, |), (2.2)

which enables us to compute average expected valves of
observables associated with the system. We shall men-
tion that the appearance of expressions like (2. 2) does
not imply that we are working in a density-matrix for-

malism; it is just a randomized Schrédinger formalism.

Now we will imitate Blume and Clausser in their way
of computing expressions like (2. 2).

Let us put H*(4) =[H, A] and W(A) =
and W are operators on#/, and let us put W,
From (2.1) and using the fact that Iz, 1,/
= Opli7,,1,,,1 WE Can obtain (2.3

WAW?*, where A
=(1-iV).

(Te,T o4}

ey | :ZO expl— iH(t = T) W, - - - W, exp(= iB*Ty)

[0l Iz, r 8- (2.3)
We note that each operator to the left of |Pp{d,} in

(2.3) is applied to whatever is on its right side. Also

taking into account the fact that the W,’s are indepen-

dent, identically distributed and independent of the

T,’s, putting — ¢H*= L and with (1. 3) and (1.4), we can

write for El{_){d, !

w©

2_0 M exp(= A [* ~ exp[L{t ) W) fotk exp[L(t, = t) (W)

LW [ exp(Liy) dty -+ dty] 400, (2.4)
where (W) (4)

A,

=EW,AW;,, k=1,2,-.., for any operator

An equally bad-looking expression may be obtained
by taking the Laplace transform of (1. 4). Let s be any
complex number with Res > 0. Then it is easy to see
that

f exp(— SOE| | at
0

E (W) ———— (2.5)

k[d’oxwo[ .

+7\L +>\L

To see it, consider the following identities:

xkﬁexp[— (A + s)t]dt fot exp{L(t - tk)]dtk<ﬁ’)ﬁ”

X -<‘X’>/0’tz exp(L#) dty

o H4 -~
Y [ a= ex‘;\[; f))‘_"LLp = L)t] /(; exp(L,)dt(W)
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X f exp[L(t, = t,.1) (W)/ exp(Lt,) dt

:A—__—'_‘ —
oI /O‘exp[ (+

€X] L(t—l‘k_l)]dtk_1<W>

t
W[ Zexp(Lty) at, =
0

s)t]dt(W)

X
o\

1 ~ 1
)\+S—L<IV>)\+S—L
1 ~ X X

T A+s-L <m>&+s-—L

W+ AWy —————

=F

If in (2.5) we substitute L by — {H*, we obtain
f expl(— sHE|d){, | dt
0

1 k
ma <<W> m) TN (2.6)

which may be used in perturbative calculations, as can
be done with (2. 4).

If we put [;"exp(~ sOE [Py, ldl =
Eq. (2.6) can be rewritten as

R(s)1up{d!l, then

R(s) l Do) by \

(- A<W>)R<s)) luotw] @1

1
:(s+)\+iH°‘ 9+7\+ iH

or even better as

R(S) ‘ J’o)(wol

_ _l__
“\s+iH*

and if we take into account the definition of (ﬁ/) it is
easy to see that

- R [0

R(s) | 9y
—( g V) = (MR s>) EDACHP

where, for any operator 4, (V)(4) =E([V,,A)]) and
(V) (A) = E(V,AV;) (which do not depend on * since the
V,'s have the same distribution). From the last identity

for R(s) if follows, after a symbolic calculation, that
R(s) ={s +i(H + MV)) = NP} (2.8)

Now, we can invert the Laplace transform and obtain

E| 9, | ={expl- i@ + Xv) + XD It wplwe| . (2.9

At this point we should mention that similar symbolic
calculation would yield

E v,y ={exp[- i(H + V)T $y).

Comparing (2.10) with (2. 9) we see that even if
“average states” evolve according to an “average
Hamiltonian” without changing their norm, there is a
“dissipative-like effect” present in the time evolution
of the expected values of the observables. This effect
is not statistical in natuve, but it is due only to the fact
that the perturbation is instantaneous. Thus even if an

(2.10)
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observable A commutes with H and each of the V,’s, its
average expected value will change in time according

to dE(¥, | A1) dt =tr(V) AE1 )y, ).

3. EXAMPLES

In his section we will consider two simple situations
and we shall develop more advanced and interesting
problems in forthcoming work.

Case 1

Consider a particle moving freely and assume that
at instants 7, a constant random potential taking values
V' with probability p and V2 with probability g=1-p is
“shut on.” Since each value of V is constant, it is easy
to see that 19,) =I1¥4(1 - iV,)exp(- iH:) 1Py and
), | =TTYE (1 + V2) exp(= iHE) |9y {dy| exp(~ iHt), where
H is the free Hamiltonian and N, is the number of pulses
up to /, from which it follows that

E| 90 | = exp(M{V?)) exp(= iH?) | o)t | exp(iH?),
(3.1

where (V& =pV§+¢V?% is a multiplicative operator. If
A denotes an observable, we will have that

EQ@, | Al by = exp(VR)UAL) | A| 3,0,

where 19,()) = [exp(~ iHt) 1. If Hidy =¢€,l9yp, this
last identity yields E(y, | H1u,) = €, exp(AM{VE).

This example shows that if the potential is changed
instantaneously at least once, not only the phase of the
state vector changes but also its modulus.

Case 2

Let us consider now a system with two states whose
Hamiltonian is given by (i /,) and has eigenstates |1)
=), 122=()). Let us assume that each of the V,’s equals
a({') with probability p and B(} {) with probability ¢=1
- p. In this case R(s) ={s +i(H*+ MV) ~ X"} is an
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operator acting on observables A which we shall iden-
tify with the ¥ ;;a,,19G!.

Let us put F(s) =s +i(H + XV®) = XV). Then
F(s) )G =3 (n,mfibrih in){m |, and we can obtain R(s)
by inverting the matrix corresponding to F(s). From
the definitions it follows rather easily that the Y are
given by the following table:

(1,1 (1,2) (2,1) (2,2)
(1,1) s=nB -inpa iva - xpa?
(1,2) —ipa s+ide-2gp% - apd? ixpa
2,1) ipa -xd s—ide- P —ipa
(2,2) -na® iNa —-iNpa s = Agp?

where A=¢€ - €,. Standard techniques would yietd R(s).

If we put o,(1-2)=EI[{21{)1% for Iy =11), and
B:(2~1)=EI|{Q14,) 1% for 1Py =12), then it is easy to
see that [;” exp(- sf)a,(1 - 2) dt = [ exp(- sHB,(2—~1)dt
=-Dy3/D, where D is the determinant of (f}’}) and
D3} is the minor of F(s) at ((1, 1), (2,2)). Also it takes
no effort to see that if (yp =1i), i=1,2, then
El(11g) 12+ E1(21Y,) 12#1.

ACKNOWLEDGMENT

I want to thank the referee for his comments which
resulted in an improvement in the presentation of the
paper.

1A, T, Bharucha-Reid, Random Integral Equations (Academic,
New York, 1972).

*M, Blume and M.J. Clausser, Phys. Rev. B 3, 583—91
{1971).

3C.V, Heer, Statistical Mechanics, Kinetic Theory and Sto-
chastic Processes (Academic, New York, 1972),

Henryk Gzy! 1329



Approximate symmetry groups of inhomogeneous metrics

Alan Spero*

Department of Physics, Wesleyan University, Middletown, Connecticut
and Department of Physics, Northern Michigan University, Marquette, Michigan

Ralph Baierlein

Department of Physics, Wesleyan University, Middletown, Connecticut
(Received 29 November 1976)

A useful step toward understanding inhomogeneous space~times would be to classify them, perhaps in a
fashion analogous to that used for spatially homogeneous space-times. To that end, a technique for
determining an approximate simply-transitive three-parameter symmetry group of a three-dimensional
positive-definite Riemannian metric is developed. The technique employs a variational principle to find a
set of three orthonormal vectors whose commutation coefficients are as close as possible to a set of
structure constants. The Bianchi classification of the structure constants of three-parameter groups is then
used to classify these inhomogeneous metrics. Application of this technique to perturbed homogeneous
metrics is discussed in detail. We find that only four types of symmetry groups can be considered generic

in the space of all perturbed homogeneous metrics.

1. INTRODUCTION

Much work has been done on the dynamics of spatially
homogeneous but anisotropic cosmological models in
the past ten years. In his pioneering work, Taub® ap-
plied a classification scheme of Bianchi to the symmetry
groups of these models, The classes of models thus
defined could then be studied using tetrads of vectors
defined via the symmetry groups.? The study of these
models was a first step in the investigation of more
complicated cosmological solutions to the gravitational
field equations.,

Spatially inhomogeneous cosmological models have,
on the other hand, resisted most attempts to deal with
them. The work so far falls into three categories: (i)
perturbation calculations; (ii) study of exact solutions
(of which there are few); and (iii) singularity theorems.
In comparison to spatially homogeneous cosmologies,
almost nothing is known about the dynamics of these
models.

These inhomogeneous cosmologies are a subject de-
manding attention at the present time, primarily due to
Misner’s chaotic cosmology.? This is the idea that the
present state of the universe—its surprising isotropy
and spectrum of inhomogeneities—would result no matter
what initial conditions were chosen, Thus the problem
of cosmogeny becomes irrelevant to cosmology.®
Collins and Hawking® have shown, however, that in the
space of all spatially homogeneous initial data, there is
no open set which asymptotically approaches isotropy.
This means that in the space of all initial data there
can be no open set which approaches isotropy and inter-
sects the space of spatially homogeneous initial data.
They also show that the Robertson—Walker spaces are
unstable to anistropic perturbations. These results are
apparently damaging to Misner’s conception. However,
they do not exclude the possibility that there may be
some type of coupling between anisotropic and inhomo-
geneous modes,” particularly on a large scale, which
would lead to the isotropization of an initially anisotro-
pic inhomogeneous universe. Furthermore, chaotic
cosmology involves the generic behavior of models
rather than their stability.® Therefore a more detailed
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understanding of inhomogeneous cosmological models
is needed before chaotic cosmology can be properly
judged.

We propose, as a first step toward dealing with spa-
tially inhomogeneous models, to determine a metric
that is the “best” spatially homogeneous approximant.
The symmetry group of the approximant provides a
means of classifying the inhomogeneous space. Indeed,
the structure constants of the group are found during the
first stage of a two-stage process of determining the
metric approximant, Thus classification, as a practical
matter, can proceed prior to full construction of the
homogeneous approximant. Here our primary result is
that only certain symmetries can be considered generic,
a not unexpected conclusion,

Once the group has been found, we may construct a
homogeneous metric that best approximates the original
metric and has the group as its symmetry group. If the
initial data are completed in a suitable way, the evolu-
tion of the original metric may be studied (i) by com-
paring that evolution with the evolution of the approxi-
mant and (ii) by studying the approximate group as a
function of time.

Approximate symmetries have been discussed before.
In particular, Matzner® proposed a way of finding vec-
tors which were “almost Killing vectors” of a given
metric. His method bears little connection to ours since
we are interested in finding three vectors which give an
approximate symmetry but together generate a simply
transitive group.

In Sec. 2 we outline the standard classification of
spatially homogeneous space~—times and our generaliza-
tion of it. In Sec. 3 our technique is formulated as a
variational principle. Section 4 discusses the resulting
differential equation and Sec. 5, the algebraic equations.
The theorems stated in Sec. 5 make up the stability
theorem which is discussed in Sec. 6. Our conclusions
are in Sec. 7.

2. OUTLINE AND MOTIVATION: SPATIALLY
HOMOGENEOUS MODELS

A space—time is said to be spatially homogeneous if
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it is invariant under a three-parameter abstract Lie
group!® G, which acts simply transitively on a family of
spacelike hypersurfaces §(¢). Given a space—time
metric* %g,,, one determines whether it is spatially
homogeneous or not by solving for its Killing vectors

(if any). If it is spatially homogeneous it will possess
three Killing vector fields £§ which are everywhere non-
zero and linearly independent and which span the §(#).
These vectors will generate a group, isomorphic to G,,
which is the symmetry group of §(¢).'* We then choose
the space—time coordinates so that the hypersurfaces of
homogeneity, §(t), are parameterized by the time, as
indicated.

If “gm3 is spatially homogeneous, we may choose a set
of invariant orthonormal basis vectors {E,} spanning
§() such that?®

[£4,E5]=£%0,Ey — E23,£,=0, @2.1)
(B4, Ep]=C5E,, @2.2)
€S, =C5 (1), 2.3)
Loy EYEY =0 4« (2.4)

The triad vectors {E 4} generate the group reciprocal
to the symmetry group. The structure constants CiB
satisty

Cfy=-CE4 (2.5)
and the Jacobi condition
CiChr+ CosCha +C2,C55=0. 2.6)

Spatially homogeneous space—times may be classified
by classifying the possible'® G,. This was first done by
Taub, using an algebraic classification of the Ciq due to
Bianchi, and later modified and developed by Schucking,
Kundt, Behr, and Ellis and MacCallum. One first de-
composes the structure constants

C FC C (o}
Clp =€anpttC +a,05 —agdy, 2.7
AB _ 1 (A B)CH _icD
8 =3 CeleB %, ay,=3Chp. (2.8)

Under position-independent rotations of the triad,

E, =R} E;,

#n*? and ay transform as a tensor density and a vector,

respectively.'” In terms of #*® and a,, the Jacobi con-
ditions (2.6) reduce to

n4Ba, =0, 2.9
Defining
Trn=n4, N=5{n*n,, - (Trn)?], (2.10)

one can then classify the possible #4? and ag as in Table
I. Since the G; acts on a family of nonintersecting
hypersurfaces, the Bianchi type (BT) of a metric is
preserved in time and the metric remains spatially
homogeneous so long as the §(f) are spacelike.

Collins and Hawking® have noted that each Bianchi type
can be assigned a “dimension” determined by the mini-
mum number of parameters needed to specify the most
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TABLE 1. Classification and dimension of the groups G; as in
Ellis and King. 37 Here a=a%,. The group types VI, and VII,
are one parameter families of groups. The parameter % is a

space—time constant and %*=a?/nyn;, where n, and n; are the

two nonzero eigenvalues of 7*3; equivalently, #=—a?/N.

Group

class Group type Dimension
IX: det #AB >0 VIII: det #48<0 6

Class A VIi: N>0 VH,;: N<O 5

2 _

a’=0 det "B =0\1l: N=0, Tr n>0 3
I: N=0=Trn 0
VI,: N>0 VI,: N<© 6

Class B det n4B=0<{IV: N=0, Tr n>0 5

a’#0 V: N=Tr n=0 3

general (n43, aB) for that type. These dimensions are
given in Table I,

Of course, if *g,, is not spatially homogeneous, then
none of this can be carried out. The necessary Killing
vectors do not exist and the E, cannot be defined. Con-
sider, however, metrics constructed by perturbing a
spatially homogeneous metric. A set of triad vectors
{e,} orthonormal with respect to the perturbed metric
and spanning the hypersurface f =constant may be
formed by slightly changing the {E}:

ey =E,+oej. (2.11)
The commutation coefficients y{;, defined by
les,e5]l=75nec, (2.12)

which in general are functions of position and time, can
be written (provided the first derivatives of the pertur-
bation are not too large) as

Yis = Chp 67555 (2.13)

where CS, are the structure constants of the unperturbed
metric’s symmetry group and ﬁ'ny are functions of at
most first order in the perturbation. Although the met-
ric is inhomogeneous, we would like to say it is ap-
proximately spatially homogeneous on the basis of

(2.13) and classify it by applying the Bianchi scheme to
C4; in (2.13). The technique for doing this will be dis-
cussed in detail in the following sections. Here we give
only an outline of what is done.

We assume we are given a space—time metric *g_,
and a spacelike hypersurface § in this space—time.
The metric induces a positive-definite metric &qy OD
S . Using a variational technique, we then search for
an everywhere nonzero triad vector field*® {e,} which is
orthonormal with respect to g., and whose commutation
coefficients y {; are as close as possible to some struc-
ture constants CiB . The metric g, is then classified by
applying the Bianchi scheme to Cia and is said to belong
to a generalized Bianchi type (GBT). The simply-
transitive three~parameter Lie group to which C§, cor-
responds’® is said to be the approximate symmetry
group of g,,, and {e,} is said to be the “best fit” triad.

Once the structure constants of the approximate sym-
metry group have been determined, one can construct
the metric that is the best spatially homogeneous ap-
proximant. That development would—logically—be
placed directly after Sec. 5, but it is not central to the
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primary focus of the paper and has been relegated to
Appendix B,

We have chosen to search for triad vectors with near-
ly constant commutation coefficients rather than look
for vectors which were almost Killing vectors® because
the best fit triad vectors lead directly to a classification
system. A second advantage to finding best fit triad
vectors—rather than approximate Killing vectors—is
that, once found, they may be used as a basis for ex-
pressing the Einstein equations. The geometric tech-
niques using tetrads may then be employed.?

QOur technique is a three-dimensional one and present-
1y takes no account of the hypersurface’s embedding in
the space—time. Thus the approximate symmetry group
of g, need not give approximate symmetries of the
second fundamental form.?® Furthermore, the results
obtained using our technique are dependent upon the
hypersurface chosen., For example, if 4gae were spatial-
ly homogeneous and if the given hypersurface were an
orbit of a point under the G,, then we would of course
be able to choose a triad whose ¥ 5, would be exactly
constant. However, if a hypersurface not a group orbit
were chosen, a constant y§, could not necessarily be
found and we might conclude that 4gaﬁ was not spatially
homogeneous.

The extension of our classification scheme to space—
times depends upon having a way of choosing families
of hypersurfaces, since two different slicings of the
same space—time may result in two different classi-
fications. We will not deal with this problem here,
restricting ourselves to three-dimensional
considerations.

3. THE VARIATIONAL PRINCIPLE

Given a subset(/ of a hypersurface § with metric
Bayr WE wish to find a triad of vector fields {eA} in// such
that

Zp€4€h =0 4p (6.1
and the commutation coefficients
Vi = 8uple s e5ler®
=2¢f, Y, eb, e (3.2)

are as close as possible to some set of structure con-
stants C$,. This is done by requiring that {e,} and
CS, give a global minimum of I where®

I= (1/V)fUAiBAiB AV +8x 8 ag

+ X (ap; (248 = 1B 4), (3.3)
855 =75~-Ch%

=y =€ 4m 7€ = (@55 — agd9), (3.4)

V= .fudV: fu(detgab)‘/zdxldxzdxsn (3.5)

The necessary conditions for a minimum are given by
51=0, (3.6)

where the variation is with respect to the ¢} [subject to
the orthonormality constraint (3.1)], #n*®, a,, A,, and
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Xiap;- The Lagrange multipliers 1, and \(,,, are nec-
essary to ensure that the C§; are structure constants,
i.e., that they satisfy (2.5) and (2.6).%2

For a homogeneous® g, , one gets I=0. Also note
that if {e,} gives the minimum value of I, then any triad
related to this one by a position-independent rotation
will also give the minimum value., This is consistent
with the fact that {E,} is determined only up to a con-
stant roation when &,y 1s homogeneous.

We would ideally like to choose // =§ . When this
choice gives a finite V, we encounter no problems.
However, if an infinite V results, instead of choosing
{{ =5 we must construct a sequence of sets //; such that
U<l and lim,__ [/, =5 . We then perform a sequence
of variational calculations, each one using a//; and
yielding the triad {e,},. The limit

{eat= ET{eA}i’
if it exists, is the triad we desire.

When // is chosen to be a proper subset of §, then the
group resulting from our variational calculation must be
considered a locally approximate symmetry group. If
Y =S then it is a globally approximate symmetry group.
Difficulties may be encountered when// =§ since the
topology of § may not admit certain groups.?*-?’

The variation with respect to the ¢, must preserve
the orthonormality condition (3.1). Hence the only vari-
ations permitted are position-dependent rigid rotations
of the triad through some angle 56*, given with respect

to the unvaried triad,
5@, =€ 4506756, (3.7

Carrying out the variations in (3.6) results in the fol-
lowing equations:

o ~C c _
be,.V* [eAAfm lescn t [z Clhstoen T Clartoy |a%s=0,

(3.8)
Bty pi — AT A + 408 + 83 4aB + 2248 =0, (3.9)
saP: —8a, +8ay +8x M,y =0, (3.10)
BA 4t nABaB:O, 3.11)
BApag: HAB —nBA=0, (3.12)
surface term-
(1/V) [y [aSs€pcyb e | > dS=0, (3.13)
for arbitrary 56¥,
7 4% and @, are defined by
Y G = €agp NCF T 408 — @09, (3.14)
ﬁAB =(1,/V) IUHAB av, aB =(1/V) ‘[Uaﬂ dav. (3.15)

The surface term (3.13) appears because we have dis-
carded a total divergence in deriving (3.8).

The symmetric part of CS, €,5, in the differential
equation (3.8) does not contribute due to the antisym-
metry of AS,. Therefore we rewrite (3.8) as

v [etag, |ePCY +AGHAG, =0, (3.16)
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where

AGE=3 [CAB pew T Cankpay — CgDEDAM]' (3.17)

This equation will be discussed in detail in the next
section. The section following that will deal with the
algebraic equations (3.9)—(3.12). Here we make a few
comments about the surface integral, (3.13).

If// = and § is compact then of course (3,13) is
identically satisfied. However if // has a boundary then
(3.13) is an additional restriction on the solutions. In
fact (3.13) then provides the natural boundary conditions
for the differential equation,??

4. THE DIFFERENTIAL EQUATION

The differential equation (3.16) is a system of three
coupled nonlinear partial differential equations for the
three Euler angles which express the orientation of the
triad {e,} with respect to some fiducial triad.? The
Euler angles result from satisfying the orthonormality
constraint on {e,}. The structure constants CS; enter
(3.16) as undetermined parameters. Once (3.16) is
solved for the {e,}, one fixes the values of the C , or
equivalently the pair (n*?,a,) by computing 74® and
o, from {e,}, and then solving the algebraic equations
(3.9)—(3.12) for (n4%,q4,). In general, (42,4, ) will
depend upon (2, a,). The logic is illustrated in Fig, 1.

We would like to give a proof of the existence of solu-
tions to the variational problem or the differential equa-
tion. However we have not been able to construct one.
It does seem reasonable that solutions exist when &b
is a perturbed homogeneous metric. This will be dis-
cussed later. In regard to the uniqueness of solutions,
there is no reason to expect them to be unique. In fact
one can easily find examples where they are not. Con-
sider the case where g, is a homogeneous metric with
a G, or G,;. Then the number of simply transitive three-
parameter subgroups that may be constructed is in
general greater than one.® Each of these subgroups
will generate a triad that is a solution to 67=0 and
gives I =0. Uniqueness of solutions when 8 is inhomo-
geneous is an open question, Note, however, the fol-
lowing discussion.

When the metric g, differs from a homogeneous
metric -‘:’ab with symmetry group G; by terms of first
order in a small quantity e, then (3.16) may be linear-
ized. We will assume that the {eA} and CAB differ from
the corresponding quantities in (g,,,G,), i.e., {E,} and
CAB, by terms of at most first order also. We write

8y =8 T €045 (4.1)

e,=E, +tede, + (&), 4.2)
where

2y E%EY =D 455 (4.3)

Zap€a€h =0p. (4.4)
Also

CS, = CS, +€6CS, + 01P), (4.5)
where

(E,,E;]=CS,E,. (4.6
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' Given ‘g,z and 5, construct g, ]

[Variational principle in /C § ]

Boundary
conditions

IT).E.: V'[eAe]+AA:OI

Solve D.E, for eA(n,a)]

t .
l Const{'uc‘t n,a) and a (n,a)

Solve algebraic equations for (h,zﬂ

I !

' Use Bianchi Use (#,a) to construct
classification on approximate G,
(n,a) to classify l

8ab &
I Construct the {E A} a_nd approximate
1 homogenous metric from G;

FIG. 1. A flow chart for the logic of the variational technique
and classification scheme.

All calculations will be done to first order iue. Co-
ordinate indices are raised and lowered with g
Orthonormality, (4.4), to first order 1mp11es
5€£=—§g"bﬁgbcEi+€Acha359c 4.7
with 5 6¢ arbitrary. Defining 5y, by
yS=CS, +esyS, + 0, (4.8)
we can calculate that
5% = ZE[[]A ealcz.eaﬁ 6 - ZA%(E)G b
- g”bégME‘{AV Eg] Efc (%aﬁgﬁ)ﬁhg‘& Ebc
=2E{ 45 |CLVa5 - - ZAﬁzLa €)s 8,
~ B ,E% (6g49,EC + ESV 5gd). (4.9)
Since
AGp=7r5s — Cly=€0r5, —€6C5; =e509, (4.10)

is of first order, the differential equation becomes

V + (EA5AC, )Y + ACH(C)6AS, = 0. (4.11)

The second derivative terms in 564 in (4.11) have the
form
(4.12)

(640" + B4 E49,7,)367"

showing that (4.11) is a strongly elliptic system of dif-
ferential equations.* From the theory of strongly
elliptic systems, strong solutions to (4.11) in a com-
pact// can be shown to exist provided the operators are
sufficiently continuous and satisfy a specific inequality.
Since our results here are inconclusive, we refer the
reader to Refs. 32 and 33,

The variational problem leading to (4.11) may be
shown to have unique solutions when // =§. Varying the
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564 in

J=(1/V) fu(éAiB[f) o)2av (4.13)
and setting 5J =0 yields {4.11) and a linearized version
of the boundary condition (3.13). Note that J is just /
after (4.1)—(4.5) have been substituted into A$; and
terms of order ¢? and higher have been dropped. The
terms involving X, and x(,5, in I have been dropped
since they have no bearing on this argument,

Consider a variation 584 — 564 +p¢4, with 0<p <1,
The new value of J is

Jlo04 +p6*1= (/) aSals0Dav

+ 3 [sasalaslsazsiolay
+f; 0A%sle)ay, (4.14)
where
58%E[0]= 2, 465, cr0 0 — 20SE(C)ob. (4.15)

The last term in (4,14) is proportional to the second
variation. For those 5¢“ which solve the differential
equation (4.11) and boundary condition, the first varia-
tion vanishes and we have

J56 +pol=Jlse]. (4.186)

Thus those 564 give a minimum or inflection point, To
have an inflection point, the second variation must
vanish, so

5ax%[p]=0. (4.17)
This implies that
EC°3¢¥ = _GMAaAﬁg(6)¢F
=—lepp(chiy) L + 8 pp ol 10T (4.18)

Regarding this equation as giving the change of ¢ along
the integral curves of E,, we can show, by considering
every Bianchi type to which €, may belong, that ¢
must equal zero or a constant on the integral curves if
it is required to be bounded, real, and single valued.
Since the integral curves are space-filling, we conclude
that the only variations which give inflection points are
spatially constant changes in 564, This is not surprising
since the variational integral is invariant under con-
stant rotations of the triad.

Hence, for nonconstant variations ¢# about a station-
ary point, we have

J[66 +pp]>Jis6].

Thus every stationary point is a minimum and, given
the continuity of J, there can therefore be only one
minimum, i.e., the solutions to (4.11) are unique.

We have not shown that the full equation (3,16) has a
unique solution if g , is a perturbed homogeneous
metric. If g,, admits more than one G,, then it is pos-
sible to construct one linearized equation for each 53.
Fach one of these equations will have a unique solution
(if a solution exists). The full equation will therefore
have multiple solutions, However, it seems likely that
in general only one solution will give the lowest value
for 1.
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5. THE ALGEBRAIC EQUATIONS

In this section we discuss the behavior of the alge-
braic equations, (3.9)—(3.12), for »4? apd ay, as-
suming that the pair {7*%, @) are a given set of con-
stants. Of course (78, @) will in fact depend upon
(n*®, ay) in some complicated fashion. The effects of
this dependence will be considered at the end of Sec.
5. After some preliminary algebra and an example, we
present a series of theorems (whose proofs are in
Appendix A) which lead to a stability theorem stated in
Sec. 6,

To begin, we note that (3.9) may be solved for aA148!
to yield

AABY — _ 4\tA,BT (5.1)
The remaining equations are
nAB = B4, (5.2)
nPay =0, (5.3)
g =0p~ngcAS, (5.4)
nap=Tap — Aaag +arp) 5.5)
These immediately imply the two useful results®:
F=aa, (5.6)
WP =ntBE . (5.7

The role of A, is, of course, to ensure that (n*?, a;)
satisfy the Jacobi condition, (5.3). Since we wish to
obtain structure constants, (5.3) must be exactly sat-
isfied, even if the differential equation was solved only
in the linear approximation. We will deal with the alge-
braic equations without approximation in this section,
In passing, we note that the effect of A, is to reduce
the size of #* +24® from its maximum value of 7° + 2@?,
This can be seen by deriving from (5.2)—(5.5) the
relations:

A - =20 a=22 3" + 2" AY¥ = 0 (5.8)
and
Rt =r @ =Anc a0, (5.9)

Given 42, @), the algebraic equations can in prin-
ciple be solved as follows, Substitution of (5.5) into
(5.4) and a subsequent contraction to find «° A yields

ag(l =N =g =T oA C + 0y, (5.10)
where
§5(1°?x:(a°)\—)\"7—7°)\)/(1—2)t2). (5.11)

We now have ay in terms of {745, a,) and . Putting
(5.10) into (5.5) gives n4® in terms of these quantities,

We need now only solve for »,. The necessary equation,
constructed using (5.3), (5.5), (5.6), and (5.10), is

@l =rd@d et rrac—aegea]

+80, - 28,57° a7 PN (5.12)

This equation is not very helpful. It does suggest that
there may be multiple solutions for 1, and consequently
for (18, ay). That is to say, given 4%, &,), there may
be several ways, consistent with (5.2)—(5.5), of form-
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ing structure constants. The existence of this multi-
plicity is confirmed by an example, Consider the case
when

Na20#a,;
and the rest are zero. The two possible solutions are

A =,/M, A=A3=ap=0, nhB =7 48

and
N =10/28, A= =ntP=0, ap=70j.

The first solution would be classified GBT II and the
second, GBT V.,

When (74®, @) satisfy the Jacobi condition, the alge-
braic equations give only one solution:

Theorem 1: n*® =748 and gy =a, if and only if
—AB _
n*%ay =0.

For many §#2,a,), though, the algebraic equations
will give multiple (n*8,a;), as can be seen from the
following two theorems:

Theorem 2: There exists a Class A solution (with n48
=1*8 and a, =0) if and only if there exists a A, such
that?fAEAB :EAV

Theorem 3: A given74? and &, admit a Class B solu-
tion if and only if @®#0.

When these troublesome multiple solutions do occur,
we choose among them by picking the solution which
gives the smallest value of I. The value of [ for a partic-
ular solution is

I=(1/V) jé/Z(n2+2a2)dV—2(n2 +2a%). (5.13)

From (5.13), (5.8), and (5.9) it is clear that I is mini-
mized when (#*%,a,) are as close to /%%, &) as pos-
sible. The size of A% will also be as small as possible
in that case.

When (4%, @,) differ only slightly from true structure
constants, one expects to be able to determine the rel-
ative sizes of I for the various solutions. Therefore,
consider the following.

If g, differs from a homogeneous metric g,, by terms
of at most first order in a small quantity e, as assumed
in the previous section, then we expect T48,d,) to
differ from (42, a,) of the G, belonging to 2., by terms
of at most first order. Hence we write

TAB = 7748 + 548 (5.14a)

By = 408, (5. 140)

All terms in 742 and @, of order ¢ or higher have been
included in 5n“% and 5az. The perturbation is chosen so
that

|5n48| and |5a;| <smallest, nonzero quantity

in {22, |eigenvalues of #4% |}. (5.15)

In cases where £, and G~3 are BT Vill or BT IX, so
that deti#*® #4°, we can explicitly construct a 1 satisfy-
ing the conditions of Theorem 2. This Ay gives the
smallest value of I among the possible solutions and the
resulting (n*?, a,) are of the same GBT as the original
G,.

Theorem 4: 78 and o, admit a solution, »*? and ag,
of GBT VIII or GBT IX if they arise from a perturbation
of a homogeneous metric with a G, of BT VIII or BT IX,
respectively. Furthermore, the solutions give global
minima of I.

This type of result will not be true if we begin with a
homogeneous metric whose 53 belongs to one of the
lower-dimensional Class A groups. For example, if
(748, q,) are BT 1I, so #,, #0 =0, and the other 7,5 are
zero, we can imagine a perturbation such that ¥, =#,5,
@, =a,0,,. In this case 7*%7, =0 and Theorem 1
applies. The resulting G, is BT IV. A theorem slightly
stronger than Theorem 4 is obtained if the homogeneous
metric’s G, belongs to Class B.

Theorem 5:7*% and a, admit at least one solution,
748 and g, of Class B if they arise from the perturba-
tion of a homogeneous metric with a G, of Class B. The
solution giving a global minimum of / will be in Class
B. Furthermore, this solution will be GBT VII, or
GBT VI, if the G, is BT VII, or BT VI,, respectively.

TABLE II. The behavior of the solutions to the algebraic equations is_summarized here, The metric g,, is assumed to arise from
a perturbation of a homogeneous metric g, with the symmetry group G;.

Class A Class B
BT of unperturbed
Gy of &,,. X VIO VI VII, II I VI, VI, IV A
Do solutions {r,a) yes yes no no no no
belonging to the.same Counter exg_mples to existence can be found in these cases yes yes yes yes
class always exist? by taking 6748 = 0& 6% = 0. If det 7] = 0 these become yes.
Does the solution yes yes depends upon perturbation
giving the minimum cannot say in general es e
I belong to the same v ves yes o ves
classg?
Do solutions of the
same type exist? yes yes —notin general yes yes depends upon

Does the solution

giving the minimum I yes yes —not in general

perturbation

depends upon

belong to the same
type?

yes yes perturbation
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Theorems 4 and 5 are the principal results of this
section. Table II exhibits these results in graphic form
for each Bianchi type.

Earlier we remarked that ¢7*®, %) had a parametric
dependence upon (n*?,q,). Symbolically, then

4B = 4B (n, a), @an, a))

and similarly for a5, Because of the manner in which
they are stated, Theorems 1--3 are unaffected by this
dependence. Theorems 4 and 5 could potentiaily be
changed. However, the proofs of these last two theorems
depenc}u only upon (i) the zeroth order parts of (ﬁ“B,'a'B),
i.e., n*® and a,, which are independent of (%2, qa,),
and (ii) the assumption that the remainders 572 (n, a)
and Saz(n,a) are small, It is unlikely that consideration
of the parametric dependence would invalidate this as-
sumption. Therefore, we feel that a proper treatment
of the equations (3.8)—(3.13) which takes all inter-
relations into account would not change the results in
Theorems 4 and 5.

6. THEOREMS ON STABLE AND GENERIC
SYMMETRIES

Together, Theorems 4 and 5 constitute a stability
theorem for symmetry groups.

Theorem 6 —Stable symmeltries: The G, in Bianchi
types VI, VII,, VIII, and IX are stable symmetry
groups. That is to say, a homogeneous metric with one
of these symmetry group types will preserve this group
type as its approximate symmetry group type when
perturbed by a small but otherwise arbitrary metric
perturbation. Groups belonging to the other types are
unstable.

The instability of G, in the other group types follows
from the existence of perturbations of a g,, with one of
these G, which produces a *#,@;) yielding a group of
some GBT other than the Bianchi type of the original
one.

This suggests that the metrics of GBT’s other than
the four listed above are a set of measure zero in the
space of all perturbed homogeneous metrics,

Theorem T: If 2 homogeneous metric is subjected to
a general perturbation, the approximate symmetry
group of the resultant metric will belong to one of the
four GBT’s: VI,, VII,, VIII, or IX,

Proof: A general perturbation dg,, is one in which all
Fourier components are nonzero. If we assume that the
differential equation (3.16) behaves in the expected
fashion, this perturbation will result in the most general
"2, @z), which require the maximum of nine parameters
to be specified. If the resulting (#*2, ;) are Class A,
then 148 =148, since ay =0, and we must have GBT VIII
or IX because detn #0. If they are Class B, then axes
may be chosen such that ¢, =05 ,,a, and n,g
=diag(0, ny,, 7;3;). A contradiction arises if either n,, or
ng, 18 zZero, since then the maximum number of param-
eters available to specify (7*8, @) is eight, three to
give the orientation of the axes, a,, n,, or n;;, and the
three x,. Hence both n,, and n,; must be nonzero and
the metric is GBT VI, or VII,.
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If a perturbed metric is to be classified as a GBT
other than the four above, the perturbation must be such
that77*2 and @, satisfy certain constraints (if V is finite).
Hence this cannot be a general perturbation and there-
fore these GBT must represent a lower-dimensional
subspace of the space of all perturbed homogeneous
metrics.

Since the proof of Theorem 6 does not depend upon
the detailed behavior of (%, @), we expect Theorem 6
to remain true after the dependence of (742,a,) upon
(n*8,ay) is taken into account.

7. CONCLUSIONS AND COMMENTS

We have in a natural way generalized the notion of
simply-transitive symmetry groups for three-dimen-
sional Riemannian metrics by defining an approximate
symmetry group for a given metric. These approximate
symmetry groups may then be classified using the now-
standard Bianchi classification,

We find that a metric may possess one of two kinds of
inhomogeneity in a set// of finite volume V. Once the
global minimum of I is found, the possibilities are:

(a)n*® and a; not constant but 748G, =0, This gives
I> 0, )\2 = O_

(b) n*2 and o, not constant and 2@, #0. This gives
I>0, A*>0,

I and A® provide a measure of the metric’s inhomo-
geneity since

homogeneity <=>[=0=2>?,

inhomogeneity <=>1>0.

Consider the subspace of superspace consisting of
all homogeneous three~-dimensional metrics in a com-
pact subset// on a manifold /.3 This subspace is
partitioned into sets, all of whose members have 53
belonging to the same Bianchi type. These sets are not
disjoint since some metrics may have more than one
(:‘3. The subspace may be extended to the space of per-
turbed homogeneous metrics on// by using a modifica-
tion of Hawking’s® topology for Lorentz metrics. Define
the neighborhood of a metric g, on{/ by

Nle,, 825y 1)Y= 1&g, ON Y/ 7/ [the ith derivatives

(0 =i=7)of g, differ from those of g, by less
than €},

The derivatives are taken with respect to a Euclidean
metric on//. The metrics in N(,, g,,,//) can be con-
sidered as arising from perturbations of the homo-
geneous ;;a,,. The space of all perturbed g,, on// can be
defined as the

1\’(6,, gabu///)

allEabonu
for some fixed ¢,.

The space of perturbed g,, can be partitioned accord-
ing to approximate symmetry groups by using (n*?,ay)
and may be further divided according to degree of in-
homogeneity by using I, That is, we can define a
neighborhood of the set of g,, on{/ with a (st of Bianchi
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type Y by
B(®, Y,/ )={g, on{/ T/ |lg,] <6 and

(n*®, ap)lg,,] are of GBT Y},

where § is some positive number greater than zero.
Each member of the space of perturbed grub (for some
€,) will lie in one of the B(5,Y,//) if 5 is chosen suffi-
ciently large.

If g,, is of BT Y and if, for some ¢, and 5, every
&N, Z,p,(/) 18 also in B(6, Y,//), then Y can be con-
sidered a stable symmetry type. The collection of
stable symmetry types is generic in the space of per-
turbed g,,.

We find that some group types do not belong to this
generic set, Not unexpectedly, those types that do be-
long, i.e., Types VI,, VII,, VIII, and IX, are those of
the highest dimension, as Collins and Hawking® antici-
pated in their study of the dynamics of homogeneous
metrics.

It is the dynamical behavior of metrics with approxi-
mate symmetry groups belonging to these generic types
that should be studied to determine, for example, the
viability of chaotic cosmology. Initial data might be
completed by requiring that the tensor x,, on §, which
gives the second fundamental form of ¢, have the same
approximate symmetry group®® as g,,. Some things are
known. The dynamics of a g~ab belonging to a generic
type should preserve the classification for small in-
crements in time since small changes in the metric can
be regarded as a perturbation to which Theorems 4—6
apply. (These theorems also imply that the classifica-
tion is stable to small changes in the choice of hyper-
surface §.) Also, some cosmological metrics are
known which are inhomogeneous and have timelike
Killing vectors.* These will of course preserve their
generalized Bianchi type throughout their evolution.
However, much more work must be done before we can
say that the behavior of even slightly inhomogeneous
cosmological models is understood.

APPENDIX A: PROOFS OF THE THEOREMS iN
SEC.5

The proofs are in the order 2, 4, 3, 5, and 1.

Proof of Theorem 2: If Ay satisfies ;25 =a/,, then
¢ =0 provided A% =3 and therefore a, =0 provided A®#1,
Equation (5.5) then gives n*8 =548, If A2=1, (5.10)

does not determine a;. The only restriction upon g is
1

¢=a°x=0. Hence ay =0 is a solution. If X*=3, a* A
cannot be determined from
ag(1 =2 =&5 ~N g+ (a° ANz,
This implies that gz satisfies
ag =2xgla° r).
Again az =0 is a solution.

If a* =0, then (5.5) gives n*® =748 and this together
with (5. 4) shows that 2 ?=a,. QED

Proof of Theovem 4: If (742, &) satisfy (5.14a,b)—
(6.15) with detn*® #0, a , such that7, ;2% =&, can be
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constructed. Since
detf4® ~detn*® 20,
the necessary X, is
7\A=(7—7-1)ABEB- (A1)

By Theorem 2, then, a Class A solution must exist.
This solution has »*® =74® and therefore must be GBT
IX or VIII. In fact, »*? is of the same type as n*? since
the perturbation cannot change the sign of the
determinant.

The question remains whether these solutions give the
smallest possible value of I, To show they do, we as-
sume the contrary and obtain a contradiction. Since (A1)
gives the only Class A solution, any other solution must
belong to Class B. Assume that

1](:1385 A>Ilc1ass B*
Then
(1% +20%) | c1ass & < (2 +20%) | c1an B
and, invoking (5.8),
72 < = 22%a% - 2(a° \)? + 24°
@ > N2aE + (a0 A ). (a2)
From (5.2)—(5.5),
e @)

assuming #*+0. Using (A3), (A2) becomes

one can show that

2+ (@' @/ a®*>2a°F 7" a. (A4)

Equations (5.6), (5.14b), and ¢>=0 imply that ¢® is at
most () (€¥). Define

o4 =7*8a,/ |al.

Since det7*® ~detn*? #0, |o| must be nonzero and of
0 (°). In terms of 04, (A4) becomes

2a* + (a° 0 > 2a%0°. (A5)
But due to the size of ¢* and o2,
2a% + {a° 0) < 2a* + 4°0% < 24%0°2,
Thus (A5) cannot be true and we must have
I crass A <] crass B QED

To prove Theorems 1, 3, and 5, more preliminary
work must be done. Substituting (A3) into (5.10) gives

aull = (aqem-a)/a* + a7+ a)*/a°)

=T 4 -NagntCac/ @ +7 agabla>n° a)/ a'. (AB)

Here we regard ay as the funadamental quantity.
Given (7#%,@,), (A6) is solved for az. Choosing x, as
in (A3) will then guarantee that n*®4; =0. Proving the
existence of a Class B solution for some 4%,a,) now
amounts to proving that there are solutions to (A6).

Multiplying (A6) by a* = (a° @)? gives

azla*X°a)=X, gata?, AT)
where
X,yp=W,05 ~N a5 T apla* 7 a)/ . (A8)
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The magnitude of ay may now be eliminated from the
problem. Define

us=ay/ lal, =1, (A9)
50 (A7) and (A8) become

X, pu® =xuy, (A10)

Xpap =0 05 - adTs tTap* 7" u), (A11)

x=u"X°u. (A12)

A necessary and sufficient condition for a solution a, to
(A6) is the existence of a unit eigenvector u, of X ,p(u).
Once a u, is found, a, is given by a, = (@ u) u, where
the direction of u, is chosen to make @* u nonnegative.

When @, is an eigenvector of 77,5, (A10) is easily
solved. Assume

T ap @2 =TT ,. (A13)

Then
up=0a,/ ( a {

solves (A10) with x =&2. The solution is then a, =0,
and (A3) gives ), =7&,/2@%. Whenever 70, another
Ay =@ ,/7T can be found so that 7,38 =a,. Thus by
Theorem 2 these (742, a}) also give Class A solutions.

An explicit solution to (A9)—(A12) cannot be found in
general.

Proof of Theorem 3: By (5.6) a® #0=>a%+0, Define
the symmetric matrix

XAp(T)=@uaip -1 45 + T apT- (A14)

For every real T, X%, will have three orthogonal unit
eigenvectors u,;,(T), i=1,2,3. Define

W AT =u; 7 ;e (A15)

Each of the W, will be continuous functions of T. Finding
a solution u, to (A9)—(A12) is equivalent to findinga T
such that

WAT)=T (A16)

for some ¢{. Since W, is bounded from above and below
by the eigenvalues of 7#2, there must be at least three

T satisfying (A16). The resulting »,(T) will give a non-
zero a,=(u,° @u,, so long as u, - &#0. If ¥*#0, then we
need only show that one u; gives o #0 to complete the
proof. Suppose u? is an eigenvector of X%y(T) for T =T,
and u,* @ =0. Then u? must also be an eigenvector of
742 and hence of X%,(T) for all T, since it will give

X%p(Duf = (TTAcﬁg - TﬁAB)u?

U A

for all values of T. If a second u?,us say, also gives
u,° @ =0, then it too must be an eigenvector of X%,(T)
for all T. The third eigenvector of X%  is then deter-
mined for all values of T and it must give u;° & #0.

QED
Proof of Theovem 5: If (F#8, @p) satisfy (5.14a,b)—
(5.15), then certainly @2 +0 and therefore they admit a
Class B solution by Theorem 3.
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We must now show that a Class B solution gives the
minimum value of I. For a Class B solution:

n+2a? =7 +2y - T?, (A17)

using (A9)—(A12) and T =u°7° u. The condition that a
Class B solution give a lower value of / than a Class A
solution is

<42 ~ T°
or

2x > T%, (A18)

Among the possible Class B solutions the one giving the
largest 2y — T2 will have the smallest I.

For the unperturbed metric

Xin= 5Af~la - ;lAC%g + T;lAB, (A19)

W (T)=u,* #° u,. (A20)

Since #%G, =0, )Z}B may be diagonalized for all values
of T by choosing axes such that

Ay =0by,, Hyp=diag(0,Hy,,iy,). (a21)

Therefore the directions of the u,, are independent of
T and are simply

U =8;4. (A22)

The u,;, gives @*#0, The W, are also independent of T.
Table III gives the values of W, and x;. For i=1,

2x; > T?=W?, Now perturb (748 &,) as in (5.14a,b)—
(5.15). For T near 0, #,,, Or #,, the principal axes of
the new X%, can differ only slightly from those of X%.
So the T which give T'= W,.(T) must differ from the un-
perturbed values by terms of order ¢. Therefore 2y, > T3
for the perturbed #; and this must give the smallest I.

Finally we note that if the original metric and G,
were BT VII, or BT VI, then the perturbed metric and
G, will be GBT VII, or GBT VI, respectively, since T
can change by ()(¢) only. QED

Proof of Theorem 1: f 48@, =0 and &% =0, then by
(5.6) *=0; so " =748 and a5 =a5.

If 748@, =0 and @*# 0, there can be no X, such that
nagh\? =@, since that would imply @?=a*5°r=0. By
Theorem 2 any solution must have a® #0, X%, in (A14)
may be diagonalized for all values of T by choosing axes
that diagonalize 742, since @, lies along a principal axis
of 748, The u# are thus eigenvectors of 7j4% and are in-
dependent of T. The only u? giving @*#0 is then the one
parallel to @, which is also an eigenvector of 745,
Therefore a, = (u° @u, =a,. (A3) implies », =0 and the
result follows.

If »4? =742 and ay; =&z, (5.3) implies n48a, =0. QED

TABLE 11,
i W; when W;=T Xi
1 0 a’
2 P9y 0
3 P33 0
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APPENDIX B: CONSTRUCTION OF AN
APPROXIMANT

We assume that the variational problem discussed in
Sec. 3 has been solved on some open set// of § with
the metric g,,, and both the best fit triad {e,} and the
structure constants Cﬁs of the approximate symmetry
group are known. Using some appropriate criteria, we
wish to define on// the approximant, a homogeneous
metric gk whose G, has the structure constants C$,
(defined as in the beginning of Sec. 2). One possible
construction is the following. Consider the set of all
triples of linearly independent vector fields {E*} in//
which satisfy

[EX, E3]=CSEES. (B1)

Choosing the triple which gives the smallest value of
K=(1/V) /L‘/ga,,(E;;a — %) EX? — e8)648 dv, (B2)

where V is the proper volume of// as in (3.5), we may
define g}, as the matrix inverse of

g*abiﬁABE}aEgb, (B3)

The vectors {E%} are then orthonormal basis vectors for
g+ and generate the group reciprocal to the symmetry
group of g* as in Sec. 2.

The problem of finding the triple yielding the mini-
mum of K can be converted to the problem of solving
a set of differential equations with boundary conditions
by using the calculus of variations in the standard
fashion. To restrict the variations of {E}} to the set of
triples solving (B1), we make use of the result that any
two solutions of (B1), {E%} and {E%}, with the same
CﬁB are related by a “‘coordinate transformation” (Ref.
14, Sec. 22).
%jfw EY(f), fl=rtx). (B4)
If {E{,(f)} is a particular, fixed solution to (B1), in the
sense of a fixed functional form, we may use (B4) to
write the variation of {Ej(x)} in terms of a variation of
f{x) and thereby ensure that the triples being consider-
ed all solve (B1). Thus the explicit form of the varia-
tion is

EX{x)=

JEHR

O T

5%

)
ax

- EX'E¥°EP 7 (55%), (B5)
where E}? is the matrix inverse of E/f. With this varia-
tion, 6 K=0 implies, after one uses (B4) and the com-

mutation relations for {E4(f)}:

ve[EX(DEEX)]+ C{,EE D2 =0, (B6)
where
D?=62¢(Et—e.) (BT

and the inner products and covariant derivative refer to
&+ Boundary conditions for the differential equation
{B6) come from the surface integral discarded in
deriving (B6). That integral is

ox?

1 Ao x\sRBCrxi afl 5%
7P E3°E} 21,0 *EX * dS.
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Requiring that the integral be zero independently of
6f%(x) gives the boundary conditions for (B6).

Given g,, and {e,} on//, the approximant gX may be
found by solving (B1) and (B6), for {E%} subject to the
boundary conditions from (B8), and then using (B3). It
is worth noting that the structure constants C$, in (B1)
alone and already determine the scalar invariants of the
three-dimensional Riemann tensor associated with the
homogeneous approximant. This occurs because we
stipulate that the C§, are structure constants of a recip-
rocal group with orthonormal generators. The problem
that we have been solving in this appendix by a mini-
mization criterion is—at least locally —nothing more
than the problem of how best to “orient” an already-
determined intrinsic geometry and fix the coordinate
form of its metric, as one superimposes it on the in-
homogeneous three-space.

As mentioned in Sec. 3, we may wish to find a global
approximant, that is, a homogeneous metric which
approximates g,, everywhere on §. If § requires several
coordinate patches to cover it or has a complicated
topology, this may be done by breaking § up into a col-
lection of simply connected open sets whose union is
5, solving for the best-fit triad and approximant in each
open set, and then piecing the sets and solutions to-
gether to obtain a global best-fit triad and approximant,
It may occur, however, that this cannot be done. The
possible topologies of a homogeneous metric are
restricted by the symmetry group (see Ref. 27 for a
partial list of permitted topologies). If the topology of
§ is not among those permitted by the approximate
symmetry group of g,,, then it will not be possible to
define an approximant, g%, on § with three globally de-
fined Killing vector fields. In a neighborhood of any
point, g% will have the necessary Killing vector fields,
but there will be no extension of these fields which
covers all of §.%6
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The exact localized solutions for a nonlinear scalar field with a scalar potential are studied. In particular,
we compare the stability of the above solutions and those obtained by Rosen in absence of the scalar

potential.

I. INTRODUCTION

We study in this paper the static and spherically
symmetric solutions, with finite energy, for the non-
linear scalar field. considered by G. Rosen ' in the
presence of a scalar potential. Also in this case the
field equation is solvable, and it has a continuous bi-
parametric set of localized solutions which are meta-
stable.

When the scalar potential is attractive, the localized
solutions are more stable and have less energy than
the solutions in absence of the potential. The opposite
behavior occurs when the scalar potential is repulsive

II. GENERAL DESCRIPTION OF THE MODEL
The Lagrangian density is
2
[ = (i—d,’) = (VO + g0 + 87, 8]

where g is a positive constant and 7 and » are constants
to be fixed later.
The field equation is
— Gt AD+3g0°+ "o =0, @)
We consider static and spherically symmetric so-
lutions ¢ = ¢{(»). Then the field equation becomes

‘::2’ +§@ + 3¢S+ I =0, (3)

Using an argument of Rosen, ? we can see that » must
be -2 in order to get solutions with finite energy. In
effect the Eq. (3) is associated with a variational
principle. In particular, its corresponding Lagrangian

is
2
L J[(g—f) - gt —Iw”cb{l r2dr.

Then we have the global condition

{Zf [o( ””}MZO' (4)

Invoking Eq. (3), we eliminate the derivative term
in Eq. (4), getting the relation
(n+2) f:hr”*z ¢rdr =0 (5)

which implies that a nontrivial localized solution can
exist only if n=-2. Thus the equation to study is

R - (©®)
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The solution obtained by Rosen! when % =0 suggests
that we can try to find solutions for (6) of the form
G =Ar*/(B+v?)¥2, In fact here we found the bipara-
metric continuous set of solutions
A

N (CVcor el “

with the conditions
B=+2(1-4R)V2, o=(8-2)/4 (8)

and where Z is an arbitrary constant, So we can see
that # must be smaller than 1/4 in order to get 8 real.
When 7 =0, Eq. (6) admits the Rosen solution and also
the solution ¢ =Z/(Z%»%+1)!/?, We note that the dimen-
sion of Z depends on 8.

The energy associated with the solution (7) is

oo 2 h
E= 471[ [(‘2—?) —gds - = (j){l ridr, (9a)
E= 6 =E (1 -4, (9b)

where Eg =M%/2g'/? is the energy obtained by Rosen in
the case =2, The energy is independent of the param-
eter Z, and it is the same for +3. When the scalar
potential is attractive (h>0), we have E>E,. Also E

is analytic about # =0, so that the potential term in (6)
is amenable to a rigorous perturbation-theory treatment

Let us now consider the dynamical stability of the
solution (7). With the perturbed general solution about
®, given by

¢:§bo+¢1‘%‘w[’ (10)

the linearization of (2) with (10) and the above restric-
tions on the parameters produces the following eigen-
value equation for the ¢,:

¢, +g&

dr? v dr

+<w2+15g¢g+£>¢1:0. (11)
We can regard Eq. (11) as the equation
A¢1 + [wz - V(V)]¢1 :O’

where V{(¥)=- (15g¢3+ h/¥?), with lim___»V(»)=0:

thus by applying the results of Kato,* Eq. (11) has

only the quadratically integrable trivial solution ¢, =0
if w?>0. Thus for the eigenfunctions of (11), w is
either zero or purely imaginary, and the associated
perturbation term in (10) grows exponentially with time.

By substituting (7) into Eq. (11) and setting
4 1/8 Z4a\ 2/8
= (‘5 Z"g) o, V= (4——£> (-w?), {12)

BZ
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TABLE 1,

B8 Yo

20 12,74
10 7.23
6 4,46
3.13
1.92
1,81
1.60
1.39
1,33
1.16

S S R N
Pl M
[ o)

-3

we obtain the dimensionless eigenvalue equation

Eor  2d (o LAV
i o do \@epw t7) = (13)

__ 15 32
where €= ~B=.

We computed numerically the first eigenvalue v,
corresponding to (13) (the Appendix) for different (k)
and we represent them in Table I. We have that

1/4 ve
T=—1= 24 14
Yo (32 g) (14)
gives a measure of the lifetime of ¢,.

It follows from Equation (13) that y,(8) =v,(-B). But
7(Z, B) and 7(Z, -B) have opposite behavior when Z and
B change. In particular, for fixed 8, 7(Z,8) increases
when |Z| increases, because the localized solution be-
comes more extended.

Since the dimension of Z depends on B, it only makes
sense to compare the time 7 for different 8, when
(4Z%g/B%)V® is given. The above quantity plays the role
of “particle radius. ” Thus we can say that 7 decreases
when 8 increases, the solution ¢, becoming more and
more unstable. So the localized solutions are more
stable when the scalar potential i/7? is attractive
(0 <h<3). The opposite behavior occurs when the
scalar potential is repulsive (2 <0).
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APPEND!X: FIRST EIGENVALUE FOR EQ.(13)

With the change ¢, = p**?/* ¢, we obtain the equa-
tion

& 2+ d B2
d:)pzl T 71% AR ST 4D
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(a) B=2: For a localized perturbation ¢, the boundary
conditions are ¢,(0)=c, d,(0)/dpo=0 and an exponential
decay at infinity. In order to find the first eigenvalue
yZ, numerically, we integrate Eq. (A1) with the above
conditions at p=0 (by the linearity in ¢, we can choose
¢ =1) for different ¥2. In general, we get, for p — =,
¢, —~ +, which gives two types of behavior, If we re-
present the solution as a point in the axis y?, the eigen-
values of Eq. (A1) correspond to the values of 2 which
separate the two kinds of behavior above. We recognize
the first eigenvalue 2 because the solution ¢, is without
nodes.

(b) 1< B <2: In this case the boundary conditions at
p=0 are as before: ¢,(0)=1; d¢,(0)/dp=0, but
@ @,(0)/dp® ==. Thus, to integrate numerically Eq. (Al)
we cannot start at the origin, To avoid this problem,
we use the following expansion of ¢, near p=0:

@, ~1=30%+[y?/(4+B8)|p? + + (A2)

which is compatible with Eq. (Al) at o =0. Also we
start the numerical integration at p=4p, where Ap
is the interval of integration, with ¢,(Ap),
dg,(Ap)/dp, and d?@,{Ap)/dp? given by (A2),

(c) B=1: We do not have the singularity in the second
derivative at p=0, and the initial conditions are

©0,(0)=1, dp,(0)/do=-%, and d*,(0)/dp*
= 14—5 -+ g“yz.

(d) 0 <B<1: In this case we have ¢,(0)=1, but
de,(0)/do =d?¢,(0)/dp* =~. Thus we proceed as in (b),
using the following expansion of ¢, near the origin:

N
@1~ 142, a,p" + fo? + wees (A3)
n:1

with N such that N3—2=> 0. The coefficients qa,, f are
obtained as in (b) by substituting (A3) in (Al). For
instance, when 8> % we get ;= -3 @, = 1

f=v¥/4+8).

For the numerical integration we used Hamming’s
predictor-corrector method of fourth order with an
interval Ap=0.01, When 8=2, we obtained y,=1.92,
which is in agreement with the value obtained by Rosen.

*Research supported by a fellowship of the Program of
Cultural Cooperation between the United States and Spain.
'On leave from Departamento de Fisica Tebrica, Universidad
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The existence of stationary localized solutions for the Dirac field interacting with Maxwell and

pseudoscalar fields is studied.

INTRODUCTION

For nonlinear classical fields the stationary localized
solutions are without radiation such that the physical
quantities—energy, charge, spin and magnetic
moment—associated with the field are finite, and they
can be used as classical representations of extended
particles.

Since the work of Rosen, ' several authors®=® looking
for localized solutions have considered the interaction
of classical fields. We study in this paper the existence
of stationary localized solutions for the Dirac field
interacting with the electromagnetic field (Sec. I) and
the pseudoscalar field (Sec. II).

. CLASSICAL DIRAC AND MAXWELL FIELDS

The general Lagrangian is

L:LD+[~EM+LI! (1)
Lo =(i/2)(@v*8, 0 -2, Tv"v) - MYy, 2)
LEM:_i_FuuFuV’ ®3)
L=~ esTy* i A, ~kTO*IF,,, (4)
our notation will be
I 0
guu:(ls_l’_ly_l), 70:<0 —I)’ (5)
0 o* . .
= ( . ) (0 the Pauli matrices),
-ag< 0
O-ILV:_Z_:'l;[},u, YJ])
A*=(4" A), F, =04, -3,4,, (6)

¢ is the electromagnetic constant, § is a parameter tak-
ing the values 0 and 1, and % is the coupling constant
for the Pauli term.

We consider stationary localized solutions of the form

iy
Uy
iy
i1y

Zb:e'i‘”lL‘(X), d}(X):' , A“:Au(x) (auA“:O) ('7)

such that {u,},, , and A, are functions of class C*(RR®)
which are bounded. Also, {u,.} and the first derivatives
of A, are quadratically integrable.

The field equations are
VoY =M+ 0y —edv A, b —ko*F =0,
AA* + ebYvHy — k3, (Po** ) =0,

(8a)
(8b)
We consider the following cases:

(AYd=1, k=0, A*=(A%0)
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When (w/M)*< 1, Wakano® numerically, found
spherically symmetric localized solutions with negative
energy. In the general case it is possible to prove the
nonexistence of localized solutions, when w< - M, by
using a generalization of the pseudovirial theorem con-
considered by Rosen® in the case of time-independent
solutions. In our situation the spinor field is time de-
pendent but the Lagrangian is static, so we get the
following global condition:

{% (Wi, 1), A“(“‘”}xfo’ (9)
where I(y(x,1), A,(x))=[/d’x. Eliminating all spatial
derivatives of the fields which appear in (9), by evoking
the field equations (8), we get an integral condition
which must be satisfied by the localized solutions. That
condition can be used in order to prove the nonexistence
of localized solutions, to test the accuracy of the
numerical localized solutions, and to find variational
solutions. ’

In the present case we get
- E?
ﬁww - My -5)dx =0,

where E is the electric field. Using the expression for

#(x) given in (7), we obtain

JUw =My |2+ [ |P) 4 (w0 + M) (g [P 4 [2,]?) —E?/2)
Xd’x=0.

(10)

Since M >0, the integrand is definite negative if w=< ~ M.
Thus (10) implies =0 if w< — M,

Remark: The Dirac equation with an electrostatic
potential A, =¢q/# (g arbitrary) does not have localized
solutions if (w/M)*> 1. In effect the global condition
(9) for Eq. (8a) with A =(q/7,0) is [(wy'd - MyPd’x =0
and so we have the above conclusion.

(B)6=1, k=0, A*=(0,A)

Multiplying Eq. (8a) by ¢ and its adjoint equation by
Y’y and subtracting, we get

2w(JY) ~ 2M(y*y) +40, (L) = 0.
If ¢ is a localized solution,
I1'1m |x|3u§: 0,
then e
J MYy - wiP)dPx =0 =y=0

if (w/M)*< 1, so that there is no localized solution.
This case has been treated numerically by Wakano®
considering a multipole expansion of the fields.

(11)

The pseudovirial theorem gives us the integral
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condition ;
J(wyry - My - HY/2+ El (VA*P)d*x =0,
hen
where H is the magnetic field. Using (11) and since
H?/2 <32 (VA we get
wi-M
w

(12)

wod) dax < 0,

so there is no localized solution if w> M. When w< - M,
proving the nonexistence of localized solutions is equi-
valent to proving that the Pauli equation in a magnetic
field has no eigenvalues imbedded in the continuous part
of the spectrum, In effect we can transform Eq. (8a),
with k=0, into an equation like the Klein—Gordon
equation.

ap+ (w? — MA)Y+ (e2A% - 2ewAd, ~ £°A®
+2icA-V +eia*E-eZ -H)Y=0,

where o=y, =*=(3" %), and E and H are the electric
and magnetic fields. In the present case 4,=0, E=0,
and since Z is diagonal we get

e?AV, = AV, - 2ieA *VV, +e0 *HV, = (0 - M})V,, (14)

(13)

where V, = (%) and V,= (42). Thus we can regard V, as an
eigenvector associated with the eigenvalue w® — M?> 0 of
the Pauli equation in a magnetic field H. In this case the
continuous part of the spectrum is [0, )1 since H is a
localized solution and then

Hx)= 0 (|x]*/2**) for a certain 6.
<l

So there are no localized solutions if there are no points
of the discrete spectrum in the continuous spectrum in
the Pauli equation.

(C)6=0, k+0, A*=(40)

In the same way as in (B) we again obtain Eq. (11). So
in this case there are no localized solution if (w/M)?< 1.

From the pseudovirial theorem we obtain
J (@) = M)+ E?/2)d°x =0

and using relation (11),

wz—M2f+ . /Ez -
== fuudx+f Sdx=0,

so there are no localized solutions if w> M. When

w< — Mwe find a semilocalized solution in which the
electromagnetic and interaction energies are finite but
not the spinorial energy. In fact, in the present case
Eq. (8) admits stationary solutions which are separable
in spherical coordinates

h(v) (é)

(15)

P=emivt , A’=A(y). (16)
7 (Smgers)
The radial equations are
f’+%f+(M—w)h+ 2%A’f=0, (17a)
W4+ M+ w)f-2RAh=0, (17b)
A”+2A':4k((ﬂz)’+2ﬂl/r). (17c)

r
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From (17c) we get A’ =4kfh and so we reduce system
(17) to the equations

2
ViRl (M - w)h+ 8R2f2h =0,

(18)
W+ (M+ w)f - 8r%h*f=0.

Actually these radial equations correspond to a spinor
field with a pseudoscalar coupling (J¥°)?, and every
solution of (18) tends asymptotically to zero when

w< -—M. We can see this from the following phase

space analysis of (18): These differential equations
describe a nonconservative, one-dimensional motion,
since “time” appears explicitly. The energy for the
corresponding conservative motion [defined by Eqs. (18)
after the 1/» term has been deleted] is

K=%(M - 0)i? - $(M + w)f? + 4k%/* 02, (19)

For the nonconservative motion which corresponds to
our actual problem, we have
16

Q}—{=2(M+ w)f—z-——*fzk2

dr s 13 (20)

so that if w< — M, then K >0 in the whole plane (f,h),
K =0 at the origin and dK/d» < 0. Thus every regular
solution of (18) for which £(0)=0 and 2(0)# 0 goes to
zero as ¥ —«, Its asymptotic behavior is

f ~1,Sin(51 +r(w® = M2 E),
! (21)

1
h~=sin(g, + »(w? - M*)*/?),
>

where 3, and 3, are constants. In this way we can see
that A’~1/%° as » — » being finite everywhere. The
electrostatic and interaction energies are finite since
the energy momentum tensor is

T = PR RR, 4 4F,, Feg® + [Treaby+ TPy

— (PP = (P Throu ] - %Ww“ + PP PA%)

—k(i(f"“zﬁFﬁ-F $0"’6¢1FV°‘) (22)

and in our case we get
E= [Ty = [ w(f*+1*)dx + [3A%d°x - [RA'fhd’x. (28)

The value of the two last integrals is 1675272 1% dr,
which is finite.

(D) 5=0, k#0, A*=(0,A)

In this case from the virial theorem we obtain the

integral condition
J(wg*d = Mg - $H)dPx =0 (24)

so that when w < - M there are no localized solutions.
When w > — M the existence of those is an open question.
In this case Egs. (8) admit no stationary solutions which
are separable in spherical coordinates. We have to
make a multipole expansion and write down equations
for each partial wave. It is, however, much simpler
and equivalent to substitute a multipole approximation
in the Lagrangian, integrate over the angles and make
variations of the radial functions, Taking the first term
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in the expansion of ¢ and A,
1
11(1')(0>
A, =V(r)sinfsing,
» A ,=-V(r)sinbcosp,

() cosf P
gr (sin(?e“’ =

(A* automatically satisfies the Lorentz condition auA“
=0), and making the following changes in functions and
variables

w:e-iwt (25)

1
(f,h):4—k(3M)‘/2(F,H), v=="-1{/,

r=p/M, A=w/M,

we obtain the radial equations

F’+%F+(1—A)H—(V’+2V/p)H:0, (262)
H+Q+AF+[/F=0, (26b)
i % V- pl V= (HH' + FF' + F*/p). (26¢)

For the localized solutions the regularity at the origin
implies F(0)=0, [/(0)=0; and from (26c) we get
H*(0)=8/(0) +2 7 F*/pdp. So given A the localized
solutions of (26) depend on two parameters H(0) and
|/7(0). Since the equations are invariant under the
change (F,H,l/)~ (- F,-H,|/), we only have to study
the region of the plane (H(0), [/(0)) for which H(0)> 0
and [/(0) < ;H?(0). We numerically explored® the above
region and we did not find localized solutions. In par-
ticular we always found that [//p~,_.7n(n>0) and that
F and H have an oscillatory behavior. The above com-
putations have been made with A=0.2, 0.5, 0.8,

We can explain the nonexistence of localized solutions
for (26) observing that (a) in these equations — |/ is
like an electrostatic potential which changes its sign at
least one time for a localized solution [since [/(0)=0]
so this potential is attractive in one region and repulsive
in the other one. (b) From Eq. (26¢) and using the
Green function associated we get

1 4 p = F?
Vz*f (8H* + F®)p*d ——f — dp.
6p2 . p p 3 , p p

In this way if |/ is a localized solution [/~¢/p? (¢ > 0) as
p — o, then F and H tend to the solution of the equations

F'+%F+ (1-A)H=0,
2 (27)
H+ (1 +A)F-p—§F:o,

when p -, but (27) has only the trivial localized solu-
tion F=H=0. In effect for these equations we have the
following integral conditions:

© 2
/ [(1 —A)H2+(1+A)F2—;§-Fz] p’dp=0, (28a)
0
obtained by direct integration on {27) and
fnm[(l-}-A)Fz-%-(A—1)H2+45F2/p3]p2dp:0 (28b)

obtained by applying the pseudovirial theorem to the
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Lagrangian

L=[[A+MFP+ (A -1E

F,
+ FH' -HF' -2 ?H - 2¢ F?/p%1p%dp

corresponding to (27).
Thus from (28) we get

Jo [2(1+ M)F%+ 2¢ F*/ p*)p?dp =0, (28¢)

which implies F=0 (H=0) if A=w/M = -1, In this way
only the trivial solution of (26} satisfies the above
asymptotic behavior.

Also we tried to find localized solutions for the equa-
tions (26a), (26b) with [/=¢p/(8+ p®) which could cor-
respond to a localized solution of (26) (if ¢ > 0), and we
did not find them. In particular, we used the values
(e,8)=1(10,2), (300, 16), (-40, 2), (- 300, 16). For the
first two values, the “electrostatic potential” [/ is
attractive near the origin and repulsive far away; for
the last two values the opposite behavior occurs, [/
changes sign at p=1, 2. The parameters (¢, 8) must
satisfy ¢/8>1-A/3, I¢l/B> 1+ 4, the condition re-
quired by the relation

o 2
JO [Hz(l “M+FA+A)+ R+ EV)Hz]pz(]p:O
obtained by integrating (26a) and (26b)

In the general case we can expect the nonexistence of
localized solutions for Eq. (8) because in this case the
interaction term in the Dirac equation is given by a
diagonal matrix $* = (% °,) with the first derivatives of
A; that is, like an electrostatic potential attractive and
repulsive in different regions, and the repulsive effect

cannot be compensed by the spinor field,

Il. CLASSICAL DIRAC AND PSEUDOSCALAR FIELDS
A. Pseudoscalar coupling

The Lagrangian is

L:LD+/—KG+LI3 (29)
Lo=5[0"2,0 - @, D] - ML, (30)
L xo=3[2,80%6 - m*¢®]+ Z 0", (31)
Li=gdrie, (32)
where ° = Y"v'v*Y4,

The field equations are

ey - MU+ goYy=0, (33a)

8,0+ m e — agp® — g y=0, (33b)

and we look for stationary localized solutions as in Sec.
1 where now ¢ = ¢(x) is a function of class C*(R?),
bounded, quadratically integrable as are its first
derivatives.

Multiplying Eq. (32a) by y* and its adjoint equation
by »°y¢ and subtracting, we get

20() - 2M(y*P) + i3, (P V) =0

and for localized solutions [(My*y — w@y)d®x = 0 which
implies =0 if (w/MY <1 and there are no localized
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solutions. The above result is independent of the pseudo-
scalar self-coupling a¢®. Thus the effect of this term in
Egs. (33) is weaker than a positive (g¢)? self-interaction,
tion, since in this case we have localized solutions.®

The pseudovirial term gives us the integral condition
Jl(@*y) - M@ + 5(V o)

~m2d? = (a/4)pNd®x =0 (34)

which makes no statement about the existence (or non-
existence) of localized solutions when (w/M)*> 1. In
this case to prove the nonexistence of those solutions is
equivalent to proving the nonexistence of eigenvalues in
the continuous part of the spectrum for a certain opera-
tor. In effect, as in Sec. I(B), we can reduce Eq. (33a)
to an equation like the Klein—Gordon one,

B+ (P = MDY - g% - gL - V=0 (35)

and since y°Z is diagonal, the above equation is equiva-
lent to two independent systems of equations.

—AVK+gz<1>2VK—ng(ﬁVq&VK:(cuz—MZ)VK (36)

where

1, i,
= V,= de,=-1 =1,
v, <142)’ 2 (”4): and e, s f2

Thus we can regard V, as an eigenvector associated
with the eigenvalue (w? — M?) >0, corresponding to the
operator T =P+ Q(x),

P=-a,
g 88,9 - e,g(2,0+142,0)
Q(X): —e,(g(axtb _ iay¢) gzd)z +€Kgazd)

The continuous part of the spectrum of P is the semi-
axis A= 0. The largest and smallest eigenvalues of the
matrix @(x) are

n=g¢+ leglu, v,=8¢"-leglu,

where u=(Y¢+V¢) /2. Suppose lim, , . ¢°=limu =0
(condition satisfied if ¢ is a localized solution), then

vy, U, tend to zero for |x|— and the norm of the matrix
@(x) also tends to zero. Then by the theorems about
differential operators on vector functions!® we conclude
that the continuous part of the spectrum of the above
operator T coincides with the semiaxis A= 0,

Remark: If g=0and a> 0, Eq. (33b) has at least a
countably infinite number of localized solutions as has
been proved by Berger. '

B. Pseudovectorial coupling

We have the same Lagrangian as before assuming that
[, bhas the form

[ =GR, ¢ (37

and the field equations are
iYEE 0 - My +igyHy®d oy =0, (38a)
9,0,0+mPd — ad® +igd, (v v°y) =0. (38b)

From the pseudovirial theorem we get the integral
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condition
Jlw(@g) = M(Ty) - 3(Vp)?
—imPo?+ adpd®x=0 (39)

which implies the nonexistence of localized solutions if
w< —-Mand a =<0,

Equations (38) admit no stationary solutions which
are separble in spherical coordinates, but as in Sec. I
I(D) we get for the lowest terms in the multipole

expansion
1
/z(r)<0>

o piwt — -
b=e ) 0S8 , ©=¢(r)cosd, (40)
: sinfelY
and making the following changes in functions and
variables
1 3 1/2 3
(f,)==GM)/*(F,H), o=-¢,
ﬁ, & (41)
108 «
’;’:p/]\'l, A= u)/lw, V= H’Z/A/I, ’3?'—5_ W '
The radial equations are
2 2
F'+EF+(1—1X)H—<I>’H—ELI>H:0, (42a)
H +(1+AF+ nb'F-%d)F:O, (42b)

2 2
"+ ;d;' —522@ -2 + 59 ~ (HH' + FF' + EF2>:O. (42¢)

Let us consider the case 3=0. For the lcoalized solu-
tions the regularity at the origin implies F(0)= 0,
$(0)=0, and from (42c) with the help of the Green
function we get

H*(0) =69’ (0) + 2/w (2(1 + V)—F':— + —V—;Q(Hze)> e Pdp.

So given A and v, the localized solutions of (42) depend
on two parameters H(0) and ¢’(0), and since the equa-
tions are invariant under the change (F,H,d)— (- F,

- H,®), we only have to study the region of the plane
(H(0), #'(0)) for which H(0)> 0 and & (0) < 2 H*(0). We
explored numerically® the above region and we did not
find localized solutions. The above computations have
been made with A=0.2, 0.5, 0.8 and v=,/m1,, m,/M,
(where m,, M, and M, are the mass of the pion, proton,
and electron respectively).

We can explain the above result by observing that in
Egs. (42a), — & is like an electrostatic potential and
—(2/p)® is like a scalar potential, and when p — o then
® ~(A/ple™? and the sum of both “potentials” is like
repulsive electrostatic potential if & > 0 (4> 0) and an
attractive electrostatic potential in the other case. On
the other hand, when there is only a scalar potential it
has to be negative in some region in order to have
localized solutions. Here the situation is analogous to
Egs. (26), because if &’(0)> 0 then we have in (42a) and
(42b) attractive electrostatic potential near the origin
and a repulsive electrostatic potential far away. The
scalar potential is attractive near the origin, but is
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TABLE 1.

Localized solutions

Fields* Interaction Term (w/M)*>1 (w/M)* <1

y, A® —ePyhyA, No if ws~M (Virial) Yes (umerically found®)

by A — ey YA, No if w>M (Virial) No (particular integral condition)

b, A —kj o "YF,, No (Virial and numerically) No (particular integral condition)

¢, A — ko ™yF,, No, if w < ~M (Virial) Virial theorem inconclusive but
numerically: no

by P VYo +§z— ot Virial theorem inconclusive No (particular integral condition)

Yy ¢ ig@y”y%i)ﬂ) +% ¢4 No, f ws~Mand ¢S 0 Virial theorem inconclusive but

(Virial)

numerically: no
e

*i: Spinor field
A®: Electrostatic potential

dominated far away. The scalar potential is attractive
near the origin, but is dominated far away by the repul-
sive electrostatic potential. The situation is the opposite
when ¢’(0) < 0 (we are thinking in the simplest localized
solution without nodes) so in both cases there is a re-
pulsive region without compensation in order to have the
localized solution.

We also tried to find localized solutions for Eqgs.
(42a) and (42b), ¢ being the lowest order solution of
Eq. (42c) with 3> 0 and without the spinorial source,
but we did not find them.

For the general solution we have a situation as in
I(D) because the interaction term in the Dirac equation
is given by a diagonal matrix »®y¢ with the first deriva-
tives of ¢. That is like an electrostatic potential
attractive and repulsive in different regions, and the
repulsive effect cannot be compensed by the spinor field.

{tl. CONCLUSIONS

A summary of the results is given in Table I. When
(w/M)?>1, in some cases, proving the nonexistence
of localized solutions is related to proving the non-
existence of eigenvalues in the continuous part of the
spectrum for a certain operator.

It is interesting that in all the cases considered here,
there are stationary localized solutions with positive
energy, when (w/M)*<1, if the spinor field has a posi-
tive (¢ self-interaction, ¢ %12
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A: Electromagnetic vector potential
¢: Pseudoscalar field
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Fredholm theory is applied to the Lippmann-Schwinger equation for noncentral potentials. For a
specified wide class of potentials it is proved that the modified Fredholm determinant cannot vanish for
real k=<0. The point k =0 is examined and the analog of the distinction between zero-energy bound states
and zero-energy resonances for central potentials is found. A generalized Levinson theorem is proved.

1. INTRODUCTION AND SUMMARY

Nonrelativistic scattering theory for noncentral local
potentials is worked out in much less detail than for
central potentials, This is regrettable, both from the
point of view of principle and from that of physics,
There are important mathematical issues that we cannot
really understand unless we know if they are special
to the central case. As a matter of physical application,
the scattering of large molecules and heavy nuclei is
often approximated by a description in terms of local
noncentral potentials. There is therefore good reason
to study the scattering by such potentials in as much
detail, if possible, as that by central ones.

Apart from the proof of the generalized Levinson
theorem itself, there are two principal new results of
this paper. The first is the discovery of the exact
analog, in the case of noncentral potentials, of the well-
known distinction between s-wave zero-energy reso-
nances and the zero-energy bound states of higher angu-
lar momenta in the case of central potentials. In view
of the role played by the zero-energy resonances in
producing the Efimov effect in three-particle systems,
this may turn out to be of more than passing interest.
The second is a proof of the absence of real singular
points & # 0 at which the modified Fredholm determinant
vanishes for potentials in the class defined by (2. 1).

This paper approaches the subject from a time-inde-
pendent point of view, in the coordinate representation,
The primary tool used will be the modified form of the
theory of Fredholm equations for L? kernels, The use of
this method in scattering theory was initiated by Jost
and Pais. ! Simon® attacked the same general problem
with more powerful tools. The results of the present
paper touch on his but go beyond them in certain direc-
tions, Specific generalizations of Levinson’s theorem
were recently given by Dreyfu53 and by Osborn and
Bolié. !

The restriction we impose on the potential, given by
{2.1), is more severe than that of Simon,? who usually
uses the intersection of L! with the Rollnik class (2. 3).
I found (2.1) very convenient for some specific purposes
that will be noted.

In Sec. 2 the Lippmann—Schwinger equation is dis-
cussed. It mainly establishes the setting and notation;
the methods and results are standard, Section 3 estab-
lishes the connection between the bound states of nega-
tive energy and the zeros of the modified Fredholm
determinant D of the Lippmann—Schwinger equation,
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including the connections between the multiplicity of a
zero and the degeneracy of the corresponding bound
state,

In Sec. 4 we discuss the exceptional points on the
real axis, not at the origin. These are points at which
D vanishes. We distinguish between exceptional points
of the first and second kind, The first are positive-
energy bound states, and they are shown to have no ef-
fect on the scattering cross section, They are known
not to exist for potentials in the class (2.1). The second
produce an infinite cross section and a divergence of
the canonical completeness relation. It is proved that
for potentials in the class (2. 1) such points cannot exist,
This implies that the singular continuous spectrum of
the Hamiltonian is empty and we have “strong asymptot-
ic completeness.”

Section 5 deals with the point 2 =0, if it is excep-
tional, We show that three, and only three, cases are
possible: In the first, the origin is an exceptional point
of the first kind and there exists an n-fold degenerate
bound state, In that case D goes exactly as k2", and the
scattering cross section is finite at 2=0, In the second
case k=0 is an exceptional point of the second kind,
and there exists a “half-bound” state, but no bound
states. In that case D is shown to go to zero exactly
linearly at k=0, and the cross section tends to infinity.
The third case is a combination of the first two: D goes
exactly like £ and the cross section tends to infinity.
We thus have the precise analog of the situation in the
central case,

In Sec. 6 the Fredholm determinant of the S matrix
is defined, shown to exist, and expressed in terms of
D, If there is a half-bound state at k=0, detS is shown
to have the value — 1 there. Otherwise it has the value
+1 at k=0, Eigenphase shifts and their sum 6 are intro-
duced, and the latter is expressed in terms of the phase
of D. The connection with the known facts in the central
case is also established.

Section 7 contains the proof of the generalized
Levinson theorem on the basis of the properties of D
established earlier. The method is the same as in the
central case for one angular momentum, and the result
is analogous, except that 5 now generally tends to in-
finity as k£ — «, Again, an extra 3w appears if there is
a zero-energy half-bound state.

There are four appendices that provide mathematical
details,
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2. THE INTEGRAL EQUATION AND THE S MATRIX

We shall assume that the potential is real and that
there exist constants® > 0 and C <« such that for
ally

/(dx)IV(x)l2+ /(dX)IV(X)I ( e yl\M)

2.1)
It follows that Ve LY (R} NLY(R®), that for all ¥
J@x|vw)|/|x-y|* <C/a? <, (2.2)
and that V is in the Rollnik class
S @x@p)| v vy |/ {x-y|* <=, 2.3)

For example, if there exist 0 <a<w=, C<o ande>0
such that

| V)| < Cla+|x])*, (2.4)
then (2. 1) holds.
Our starting point is the Lippmann—Schwinger
equation®
Bk, x) =exp(ik %) + [ (dy) Ge;x,y) V() (K, y), (2.5)
where
G(k;X,y) = exp(ik|X~y|/4n|x—y]|. (2.6)

In the usual manner, we multiply (2.5) by V1% gng
define ¢(k,x)=|V(x)!1!/2y(k, X), so that ¢(k,X) is subject
to the equation

ok, X) = @k, %) + [ ([dy) K(k;x,¥) 0 (K, 3), 2.7)
in which

@0k, X) = | V(x)|!/? exp(ik ° X),
and the kernel is given by

K(kix,y)= | V&) |12 Gle;x, y) VI/2(y), 2. 8)

We have written here as a shorthand
Vi) = vy | v,

It is well known that if V is in the Rollnik class (2, 3),
then for each % in the open upper half of the complex
plane, or on the real axis, Imk > 0, K(k;X,y) is the

kernel of a Hilbert—Schmidt operator K, and™?
lim tr&?= lim tr(KK"*=0 2.9)
tl= w0 lel= o

for all Imk = 0, In the same region we have
‘Hnl trK®=0. (2.9

This is shown in Appendix D,

1t follows that modified Fredholm theory® is applica-
ble to (2. 7). The modified Fredholm determinant!® is
well defined for each k, Imk > 0:

D(k) = dety(1 = AK) |y

as an absolutely convergent power series in A, for A =1,
Furthermore, for Imk= 0

lim D(¢)=1

lk]=

because of (2.9) and (2. 9") (see Appendix D).

(2. 10)
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The kernel K (%;X,y) defines an analytic, operator-
valued function of %, regular in the open upper half-
plane. Since

aK dK

U @ < 411r) (f(d")(v(")l)2<°°

if Ve L', each term in the power series of dety(1 — AK)
is an analytic function of 2, and hence D(k) is an analytic
function of #, regular in the open upper half-plane, Its
boundary values on the real axis are continuous, (If V
decreases exponentially, then D has an analytic continu-
ation to Imk <0.)

The form (2, 6) of G shows explicitly that for real %

G*(k;x,y)=G(~ k;x,y). Therefore,
D(~k}=D*(k) (2.11)
for real k.

The Fredholm alternative assures us that if for 2=k,

D(kg)=0, (2.12)
then the homogeneous form of (2, 7)
@(x)= | [dy) K(ky;x,y) 9(y) (2.13)

has a solution ¢ € L%, In that case (2.7) has a solution
in L? if and only if ¢, (which, for real k, is in L% if V
is in L1) is orthogonal to all solutions ¢’ of the equation
1{T(P' — (ﬂl.
This condition reads explicitly!!
| (@x) explikgk = x) | V) |1/ ¢ (x) = (2.14)

Only for directions E for which (2. 14) holds, has (2.7)
a solution ¢(ky2,X)c L2, We shall call points k, with
Imk, = 0 for which (2, 12) holds exceptional points,

For real values of % that are not exceptional, (2,7)
has a unique solution ¢(k, X) € L%, Because of (2. 2) it
follows that ¥(k, X), defined by

Pk, %)= exp(ik *X) + [ (dy) G(k;x,¥) VI/2(y) o (k, )

exists pointwise for all X, is continuous in K, and satis-
fies (2. 5) as well as, at least in a generalized sense,
the Schrodinger equation

[- a+V]y=Fp,

Its asymptotic form for large |x! is
P(k, X) = exp(K *X) + (exp (ik |x|)/|x]) T®, k) +o(|x ),
2.15)

where, with K’ =k and v(X) = V(x)/| V(x)1,

ToF )= — f (dx) exp(- 7K’ *X) V(X) (K, X)

me /(dx)w(r(k',x)fr'(x)w(k,x)u (2.16)

Thus the scattering amplitude, or T matrix, Tk, Jor k)
is well-defined and continuous for all & and &’ for each
real nonexceptional value of %,

The differential scattering cross section is given by

% ek Ry = | T(k;R? B | (2.17)
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and is thus well defined too and f1mte for each non-
exceptional real 2 and all % and B,

The S matrix is defined in terms of the scattering
operator so that for all f in L? and almost all k

(SH®) = [ dk’ SGe;, k) flkk), (2.18)
and it is expressed in terms of T as'?
Sk, B)=6(k, k') + (ik/2m) TRk, &), (2.19)

If the potential is both in L' and in the Rollnik class

(2. 3), then the scattering operator is known to be
unitary. ** We may write this statement in the form that
for all fe L*

J R [ 700 [P [ 7 dkk? [ dk| [ dkSGesk, k) flesR) |2
= [ dkkt [ die| [ dkrs* (e B) Fle sk |2,

(2.20)

and it implies that the S matrix is unitary for almost
all k., Consequently, T must obey the generalized opti-
cal theorem for almost all %:

T3k By = T*(esk, o)
= (ik/2m) | dR"T (e’ ) T* (k3o ™)

= (ik/2) | dR"T* (s 7Y T (s R). (2. 21)

Continuity implies that these equations must hold for
all real nonexceptional values of %,

3. NEGATIVE-ENERGY BOUND STATES

For Imk ~ 0 the operator GV is Hilbert—Schmidt
(because V< L%, Hence, if kb, with Im#, > 0 is an ex-
ceptional point (2, 12), then there exists a nontrivial
solution ¥ € L? of the equation

o) = [ (dy) ERERIX=TD) gy gy,

47ix-yl @.1)

Thus /% is an eigenvalue, or bound state, It follows that
#4, must lie on the imaginary axis,

Conversely, if k%< 0 is an eigenvalue of H=~ A+ V,
then each eigenfunction ¥ must satisfy the homogeneous
form (3.1) of (2,5). It follows that D(k))=0. Thus there
is a one-to-one correspondence between the negative-
energy bound states and the zeros of D in the upper
half-plane.

The multiplicity of the zero of D(k) at k =%;, Imk,.~ 0,
equals the degeneracy of the eigenvalue #3. This is
shown as follows!*:

lk Indety(1 ~ K) = — ln dety(1 - GV)

=—tr [(1-(,V’)" a¢ V(:V]:Zktrg(GV)z,

where
G=01- GG =(k* - Hy- V)?

is the resolvent of H=H,+ V and all differentiations are
justified by the absolute convergence of the series and
integrals. Now let D(k) have a zero of order p at k =k,
and let P be the projection onto the n-dimensional
eigenspace of H at k%, so that GVP=P, Then
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p=1lim (k- ko) InDE)=trP(GV): =trP=n

Lag 1

because (j, as the resolvent of the self-adjoint operator
H, has a simple pole at kzzk% whose residue is P,

4. REAL EXCEPTIONAL k, #+0

Suppose that 2y # 0, with Imz; =0, is an exceptional
point (2, 12), Then (2, 13) has a nontrivial solution ¢ & L?
of the form ¢ = V{!/%) where ¥ obeys Eq. (3.1) point-
wise for all X, On the assumption that V satisfies (2, 1),
the asymptotic form of ¥ for large (X! is

PX) =~ (exp(iky | X))/ 47 |x|) [ (dy) exp(= ikoZ *y) V(¥) ¥(y)
+h(x), 4.1)

where i(x)e L2(R%), as is shown in Appendix A, There-
fore, ¥(x) is normalizable if and only if for almost all
directions 7

J (dy) explikyii*y) V(y) ¥y) =0

We shall call a real exceptional point %, for which a
nontrivial solution of (3. 1) exists such that (4. 2) holds
for almost all i an exceplional point of the fivs( kind,

If a solution of (3, 1) exists for which (4, 2) fails for a
set of directions i of positive Lebesgue measure, we
call ky an exceplional point of the second kind, 15 We see
that if 2y #0 is a real exceptional point of the first kind,
then %% is a positive-energy bound state,

4.2)

Conversely, if k23>0 is an eigenvalue, then (3.1) must
have a nontrivial solution and (2, 12) must hold, as well
as (4.2), Hence k% is a positive-energy bound state if
and only if k; is an exceptional point of the first kind.

Now note that (4. 2) is identical with (2.14). There-
fore, if the exceptional point is a bound state then (2. 5)
still has a well-defined solution for almost all #, Of
course, this solution is not unique since it may be
augmented by any multiple of a solution of (3. 1), How-
ever, if the solution of (2.5) is inserted in (2.16) for
the calculation of the scattering amplitude, then (4, 2)
assures that the ambiguity of P(k, X) causes an ambiguitly
in T in almost no direction, We are therefore free to
define T continuously even at k& =k,

It was proved by Kato!® that potentials in the class
(2. 4) produce no positive energy bound states. Hence,
if there are real exceptional points #;+ 0, then they
must be of the second kind.

Suppose now that 2+ 0 is a real exceptional point of
the second kind, so that there are solutions of (3.1)
that violate (4.2) for all directions 7 in a set & of posi-
tive Lebesgue measure. Then, for all ke Q, (2.5) has
no solution, and the scattering amplitude for those val-
ues of £ does not exist, Let us now fix &, at an excep-~
tional value and, for real x, consider the equation

O™ =g, + 2\K@™, 4.3)

which goes over into (2.7) as x—1, The function ¢,
depends on k and we fix it at a value for which 0= ¢
does not ex1st {Since k&, is an exceptional point of the
second kind, there exists a set of positive measure of
such &, ) We have

e™ = (1~ 1K) g,. 4. 4)
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Because K is compact, the resolvent (1 - K)!isa
meromorphic function of x with a pole of finite order
at =1, Let the pole of (1 - AK)~%, be of order N,

Then
lim (- NYeM=9 4.5)
k-.

exists, fails to vanish for almost all X, and satisfies
the homogeneous equation

Ke=g9,

There must exist a set of directions @ of positive mea-
sure such that for all ne

[ (dx) exp(~ ikyn +x)| V(x)[1/20’ ()0, (4. 6)
where

@o'= (p*v
satisfies

KT(PI — (P’.
Since ¢ is of the form | V{!/%y, where ¢ satisfies (3. 1),
(4. 6) means that

[ (dx) exp(ikyhi * X) V(%) $(X) # 0

for all < Q,

4.7)

We now form the T matrix T™ out of o™ = |V {1/23pW
as in (2, 16). It satisfies the optical theorem (2. 21)
with 2’ =k for all A#1, Multiplying (2. 21) by (»— 1)*¥
and letting »x —1, we obtain

Jdk"| T(osk” , B)|* =0, “.8)
where
Tlysf? B = lim (A= 1) TP (kg ;57 )
A=~
=~ (1/47) | (dx) exp(= ikek” *X) V(X) $(X).
4.9)

Equation (4. 8) contradicts (4,7). Consequently, our
supposition that &, is an exceptional point of the second
kind is false, We have thus proved the following:

Theovem!™: If the potential satisfies (2.1), then the
set of real exceptional points of the second kind contains
at most the point 2 =0,

Together with Kato’s proof of the absence of positive-
energy bound states, this leads to the

Corvollary: For potentials that satisfy (2.4), D(k)#0
for all real 2+0,

Let us make a connection between the exceptional
points 2, +# 0 on the real axis, and the structure of the
spectrum of H, We expect the set of solutions (K, X)
of (2. 5) and of the bound states ¥,(x) to be complete in
the sense that for every fe L?

Jax|f@) |2 =2 | a, |2+ [ (@) | F (k)2 (4.10)

where

a,= [ @%) PE®) fx), Fk)= (@x)*(k, X)F(X).

However, if there are real exceptional points % # 0 of
the second kind, then this cannot be true, as y¥(k, X) is
of the form
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(K, X) = P(k, X)/D(k)

and D(k) tends to zero at least as (k- k;) for k —k,, 1™
Thus the integral on the right-hand side of (4. 10) will
diverge at =k, at least for some functions fe L%,
The set of real exceptional points k&, # 0 of the second
kind therefore presumably constitutes the singular con-
tinuous spectrum of H, This presumption is strength-
ened by Simon’s proof18 that the singular spectrum is
part of the exceptional set, and by its incompatibility
with the unitarity of the S matrix, 19 If the exceptional
set is countable, then the singular spectrum is known
to be empty. 2 Analytic properties of the potential also
have been proved to be sufficient to rule out a singular
spectrum, !

In view of Ref. 2, p. 117, the above corollary implies
that for potentials in the class (2. 4), the singular con-
tinuous spectrum is empty. We also note that it implies
strong asymptotic completeness in Simon’s terminol-
ogy.? These conclusions for potentials in the class
(2.4) are not new, %

5. THEPOINT k=0
Let us write

G=Gy+G' =Gy +ikGy+G" =Gy +ikG, + k*Gy + G,

(5.1)
where
Gy(x,y) = (1/4m)(1/ %~ y]), (5.2)
Gy(x,y)=—1/4n, (5.3)
Gy(x,9)=|x-y| /87, (5.4)
and one readily finds that for Imk > 0
|G (k;x,y)| < ClR|/1+ |R||x~-¥], (5. 5)
|G (ksx, ) [<Clk|*|x=y|/ W+ |k][x~y]), (5.5

(G sx, )< Clel*|x-y[?/ @+ [k]x-y]) (5.5

for some constant C. Because ~ G, is the kernel of a
positive semidefinite operator, we may define

A=(-Gy)'/? (5. 6)
as positive semidefinite, and

B=A"'GVA. (5.7)
Corresponding to (5.1), we then have

B=B,+Bp, (5. 8)
where

By=- AVA =B} (5.9)
and

Bp=1ikB,; +R,;=ikB;+k’B, + R,. (5.10)
If V satisfies (2. 3), then B, is Hilbert—Schmidt.

Note that since the power-series expansion of

det, (1 — K) contains K only in the form of trk™,
n=2,*+-, we have

D(0) =dety(1 - K;) =det, (1 — By). (5.11)

Assume now that £ =0 is an exceptional point,
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D(0)=0. (5.12)
Then there exist functions x @ L? and ¢ € L? such that

Kyp =0, (5.13)

Box =X. (5.13")

To every solution x € L® of (5.13’) there corresponds a
solution

o= V15 Gy
of (5.13), and
(@, )=, (= G)'*| V[ (= Gp)t *x) <

because trGy| VIG,| Vi<, Conversely, to every solu-
tion ¢ & L? of (5.13) there corresponds a solution

X:(_ G0)1/2V1/2(p
of (5.13’), and

(X, ) == (@, VV2G V2 g) < =,
We define §=G,V1/ig =~ (- G)!/%y, or, explicitly,

(5.14)

(5.14")

¥(x) = J (dy) Go(x, y) V2 (y) o(y), (5.15)
which means that
$(x) = | (dy) Gy(x,y) V(y) b(y). (5. 16)

As before, it follows from the fact that ¢ € L? and the
assumptions (2, 2) and V< L! that (%) is well-defined
pointwise for every X and satisfies the differential
equation

A=V (5.17)
at least in a generalized sense. Furthermore, it has
the asymptotic form

v(x) =~— (1/47[x]) [ @dy) V(§) ¥(y) + h(x), (5. 18)

where i € LE(R®), because of assumption (2.1), (See
Appendix A.)

Consequently, $(x) is in L? if and only if
J {dx) V(x) ¥(x) = 0.

We shall refer to a function ¥ that satisfies (5. 16) but
not (5.19) as a half-bound state. I such a ¢ exists,
k=0 is an exceptional point of the second kind.

(5.19)

Suppose there are two linearly independent half-
bound states at =0, Then one can always form a linear
combination that satisfies (5.19) and hence is a bound
state, If there are # linearly independent solutions of
(5. 16), we can therefore assume without loss of gen-
erality that they have been so arranged that at most one
of them violates (5.19). They can also be assumed to
be real functions,

Thus, if 1 is an eigenvalue of K, and B, then there are
the following three possibilities:

(1) {5.13') has = 1 linearly independent solutions
Xms M =1,.,.,n, and all of the corresponding functions
¥ =Ax,, obey (5.19). Then 1 is an n-fold degenerate
eigenvalue of G,V and 2 =0 is an exceptional point of
the first kind. Because B is compact, » is necessarily
finite,

(2) (5.13’) has exactly one nontrivial solution y and for
the corresponding function y=Ay, (5.19) does not hold.
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Then 1 is not an eigenvalue of GyV, ¢ is a half-bound
state, and k=0 is an exceptional point of the second

kind.

(3) (5.13’) has n+1 >1 linearly independent solutions
Xms M1=1,...,7n+1, such that the functions ¥,
m=1,...,n, that correspond to the first n x’s obey
(5.19), whereas ¥,,;, corresponding to y,.;, does not.
Then 1 is an n-fold degenerate eigenvalue of G,V and,
in addition, there is a half-bound state, Now 2#=0 is an
exceptional point of the first and second kind. We may
assume that the » solutions x,,, m=1,...,n, of (5.13")
are mutually orthogonal and normalized to unity. But
we cannot necessarily expect them to be orthogonal

tO Xn+1'

Let P be the orthogonal projection on the eigenspace
of B, at the eigenvalue 1, and @ =1 - P, so that BjP =P
and dety (1 - ByQ)# 0. Because B, is self-adjoint, it com-
mutes with P, [P, B;|=0. Now

(I—B):l—Bop"BoQ"BR
=(1-B@){l - [1- (1 -B,Q)Bg|"'P}

X {1~ (1~ By@)'Bgl,
and

D(k) =dety(1 - ByQ) exp(tr (P + Bg)) det[1 - (1 - ByQ) ' Bg]

xdet{l - [1 - (1 - B,@)"'B,]"1P}.
(5. 20)

The first factor on the right is real and different from
zero. The second approaches exp(trP) as k — 0 because
(5. 5) shows that

trBr=0(k) (5. 21)

if Ve L1, Because the same hypothesis and (5, 5) leads
to

trBpBL=0(k), (5.22)

the third factor tends to unity. The last factor equals
det{ }=det,{1 -[1-(1 - BQ)™BgJ"}
=detp{B[1-(1 - ByQ)"'B ]},
where?* det, denotes the (finite-dimensional) deter-
minant on the range of P, Because of (5.22), the be-
havior of D(%¥) near #=0 is therefore determined by

det,By, We must now examine the three possibilities
denumerated above, Let us first examine

Case 2: In this case the range of P is one dimensional,
and (5.19) does not hold. Then

det , Bp=ik(x, Byx) + O(k?)
= —ik(V), G V) + O(RY (5. 23)
because (5.13’) implies that ¥ =— Ay and y=AVY. That

the remainder is O(k?) is shown in Appendix B. Equa-
tion (5. 3) and the violation of (5, 19) therefore show that

D(k) =ikc +o(k), (5. 24)

where ¢ is real and ¢ #0.

By the same arguments given in Sec. 4 for real ex-
ceptional points 2y # 0 of the second kind, it follows
from the violation of (5.19) that (2, 5) for #=0 has no
solution and that the scattering cross section is infinite
at k=0,
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Case 1: X (5.19) holds, then B; contributes nothing to
det, By and the leading term comes from By:
det, Bp=det,(k*B,) + « - =k*"det, By +o(k*"). (5. 25)

That the remainder is o(k%") follows from (2.1), (5.18),
and (5. 5”) as is shown in Appendix B, We now make
use of the fact that A-2=v? and therefore

A2Gy=— G,
Consequently
(s BoXm ) = Uny AP G Vi) = = (b1, Go Vidr)
=~ Pms Vm)s.
and hence

det, Bp= (- 1)"det(¥,,, ¥, ) # 0.
As a result

D) =k%c +o (R, (5. 26)

where ¢ is real and c#0.

By the same arguments given in Sec, 4 for real ex-
ceptional points &, # 0 of the first kind, (2,5) for k=0
now has a well-defined solution and the scattering cross
section is finite,

Case 3: K ¢, m=1,...,n, satisfy (5.19) but ¢,,; does
not and if y,,, m=1,,..,n+1, are the corresponding
solutions of (5.13’), then

(Xms BiXm’):_ (j an+1)2/4777 m=m'=n+1,

=0, otherwise,

and
(me BZXm’ ) == (wm’ (pm’)-

We use these vectors to evaluate the determinant, even
though x,,; is not necessarily orthogonal to y,,
m=1,...,n.% As a result®®

D(k)=const det,(ikB; + k*B, + R,)

:Z.kz'"lC _’_0(}?2"»1) (5. 27)

where ¢ is real and ¢ #0, Again it follows that the scat-
tering cross section at # =0 is infinite,

We may also examine the behavior of the solution
¥(k, X) of (2, 5) near 2=0. As we have already seen, in
case 1 the function remains well defined and finite at
k=0 because of (5.19), It is shown in Appendix C that
in Cases 2 and 3, that is, whenever there is a half-
bound state at 2=0,

lkiff)l D(k) ¥(k, x) = J(0, X) (5.28)

exists in the sense that | V(x){!/23(0, X) exists almost
everywhere as a function in L? with positive norm,

The spectral expansion of the resolvent (% — H)™! is
given by

Gleim, )= @nrf ) LRV E)

+Zn; wk(x)_w; ) (5. 29)
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for Imk >0, If k=0 is an exceptional point of the second
kind, i.e., if there is a half-bound state (as well as
possibly being exceptional of the first kind, so that
there are also &£ =0 bound states), then it follows from
(5. 28) that the Green’s function (5. 29) diverges as k™!
near 2=0,

We note that these results are exactly analogous to
the well-known situation for central potentials, In that
case (5.19) is trivially satisfied whenever ¢ is a wave-
function of angular momentum I > 0, It is less easy to
see from the three-dimensional point of view why (5.19)
is never true when ¢ has angular momentum /=0,

There is one important property of central potentials
that has not been generalized: If § is the first “bound
state,” then (5. 19) does not hold. In other words, the
following proposition is valid for central potentials with
finite first and second absolute moments: If zevo is an
exceptional point and ftheve ave no negative eigenvalues,
then (5.19) does not hold. 1 have not succeeded in prov-
ing this proposition for noncentral potentials and do not
know if it is generally valid.

6. THE DETERMINANT OF THE S MATRIX

At a fixed value of k, the S matrix may be regarded
as an integral operator on the unit sphere, and its
kernel is given in (2, 19). It is unitary. Since T was
shown in Secs. 2 and 4 to be well defined and finite
for all # and 2’ for each k > 0, it is the kernel of a
trace-class operator for each » >0, The Fredholm de-
terminant of the S matrix is therefore well defined:

detS = det(1 + (ik/27) T). (6.1)
We now calculate?? 28
D*(k) = dety(1 - GTV)
=dety,{(1 - GV)[1-(1 - GV) G - G) V]}
=dety(1 - GV){exp[2ni tr Vo (k: — H,)]}
xdet{l - (1 - GV)'2ris(k* - Hy) V}, (6. 2)

where 6(k% H,) is the operator whose kernel is
AlX,y) = 3k(27)"2 [ dk’ exp(iR B > (x - ¥)).
Then (1 - GV)~'6(%* - H,) V has the kernel - kM(X,y)/
(27)* where
M(x,y) = (1/47) [ dk'y(ek’, x) exp(- ikF’ +y) V(y).
Because one readily sees that
trM"=tr 77,

where the trace on the right is over the unit sphere, it
follows that

det{l - 27i(1 - GV)"'6(k* - H,) V}=det[1 + (ik/27)T] = detS.

(6. 3)
Furthermore,
trVo(k® - Hy) =k(@2m)™ [ (dx) V(x)
and (6,2) and (6. 3) yield?®
detS(k) = exp[- (Gk/2m) [(ax)V] D* ()/D(k). (6.4)
For large % the dominant term in 7 is
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T(esk’, )=~ (1/4m) [ (d%) V(%) explik (k- &) *x+0 (1),
and therefore the behavior of detS is as
IndetS =~ (ik/27) [ (dx) V(x) + O(1).

In view of (2. 10) the exponential factor in (6, 4) is thus
needed to give the right-hand side the correct behavior
for large k.

If 2=0 is exceptional, then the results of Sec. 5, to-
gether with (6. 4), show directly that if there is a half-
bound state, then

detS(0)=~1, (6. 5)
whereas otherwise
detS(0) =1, (6.5")

Note that it follows from the fact that D(0) is real [be-
cause of (2,11)] that (6.5’) holds alsc whenever k=0
is not exceptional.

Because S is unitary, we may define, modw, a real
number & by

detS = exp(2:5). (6.6)

T being compact, its spectrum consists of a denumera-
ble set of point eigenvalues only, and the eigenvalues
of S may be written in the form exp(2i5,), n=1,,..,«,
They accumulate at 1; hence the 5, may be defined so
that they accumulate at zero, These are the eigenphase
shifts, We then have

©

5= ?_,: 8, (modr), 6.7)
The result (6.4) implies that we may define
(k) =~ (k/47) | (dX) V(X) - n(k), (6. 8)

where

n(k) =argD(k).
It follows from (6. 5’) that, unless there is a zero-
energy half-bound state, 5(0)=mn, where m is an
integer, If there is a half-bound state, then (6.5) shows

that 5(0) = (m + $)v. The significance of these integers
is the subject of the generalized Levinson theorem,

We note that if V is central, the eigenphase shifts
become the ordinary phase shifts §;, and an eigenvalue
of angular momentum [ has a (2! +1)-fold degeneracy.
Hence

5:23 (2 +1) 8,. (6.9)
0

The relation between D(k) and the Jost function is such
that®

n== 23 @L+1){8, + k™t [ ar Vor)lu, (k7))
i
=—8-(k/4m) [ (@x) V(|x]),
which is identical with (6. 8).
7. THE GENERALIZED LEVINSON THEOREM

The generalized Levinson theorem is now proved by
the same method as in the central case, ! The function
D(k) is analytic in the upper half-plane, continuous on
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the real axis, and it satisfies (2, 10) as well as (2.11).
It has no zeros on the real axis, except possibly at
k=0, The zeros of D(k) in Imk > 0 are the bound states,
and their multiplicity equals the degeneracy. We may
therefore proceed in the standard method by evaluating
the contour integral

(1/2ri) J, dInD(k) =n

over a contour C along the real axis from - R to + R,
avoiding the origin by a small semicircle of radius ¢
in the upper half-plane, and closing it in the upper half-
plane by a large semicircle of radius R, Then » is the
number of bound states, counted m times if m-fold
degenerate, Evaluation of the integral in the limit as
e — 0 and R -« gives

7(0) = =) == 7 + 29)
if we define n(~ k)=~ n(k), as we may because of (2,11),
Here n is the number of bound states, including those
at k=0, and ¢ =1 if there is a half-bound state at ¥ =0;

otherwise ¢ =0, Again, each bound state is counted as
many times as it is degenerate.

The generalized Levinson theorem thus reads as
follows®2:

5(0) - Lim [6(k) + (/4n) [ (dx) V]=mn(n+ 3q). (7.1)
At the end of Sec. 6 we observed that there exists
an integer m such that

5(0)=m(m + 3q). (7.2)

Comparison with (7. 1) now allows us to conclude that
there must exist an integer p such that

Lim [6(k) + (k/47) [ (dx) V]=mp. (7.3)

Rk~ ©
We may choose p =0 and thereby specify 6(k) uniquely.
In that case the generalized Levinson theorem®® is sim-
ply (7.2), where m is the total number of bound states,
including those at # =0 and counting each as often as its
degeneracy, and where ¢ =1 if there is a half-bound
state at =0, and ¢ =0 otherwise. Equation (7.3) ap-
pears to be new.

After this paper was written, I learned of an article
by Wollenberg?! with similar results. It is, however,
less explicit and based on much more restrictive
assumptions,
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APPENDIX A

We want to demonstrate (4, 1), It follows from (2, 2)
that ¢ is bounded. Hence by (3.1) and (2. 1)

._C [V i+ Ix)ix-yl . C’
W(x)l\me ﬁdY) X~ yi% T b+ Ixi

(A1)

for some b >0, and therefore by (4.1)

Roger G. Newton 1354



0= TR [ (4 ey ity ) Vi) 9l9) + ),

(A2)

where h=hy+h,,

oy ) = f‘—jﬁ‘ﬂﬂ v(y) zp(y)exp(ikolx—yl)(.xfy\ - ﬁ) ’

(A3)
Foy (X) = Z%I%:—l f (dy) V(y) $(y) [expliky | X~ ¥|)
- exp(iky(| x| ~ % -¥))]. (a4)
From (A3)
ﬁdx)[h,(2 <t ﬁdX)[ f(dy)'V(y) 11’(}')(‘,}{-;,‘] - ‘,%,‘)ﬂz
(A5)

Inverting the order of integrations (which is allowed be-
cause the integrand is positive) we first consider

fon (- ) <l fim{iste - )"

where X=|ylZz and y=

__1____1_)2_
-2zl lzl]

and the integral clearly converges. Thus

Jawy (- 5) el o)

Consequently by Schwarz’s inequality

ﬁdx) (,x1y| 'T:lc7>(lx—1y’i 'ﬁl‘—‘) ’

= Cly|t/2yr |t

lyln, But

(1— 27 -2)°
1h-z1%lzl*(z1+1n-2])

and
J @y |y < Sy | vy e |y |2
=C(f @y |viy=c (A7)

because of (Al).

For iy, we write

g=|x-y| - [x|+z-y=|x]f,

f=1+|z]2-282)12—1+2% 2, y=|x|2.
Since f is continuous and

f~lzl(1+2%-2) as |z]~,

f~Clz|? as |z|—o0,
it follows that

= Clz]/ta+|z])

and hence
lg|<Clyl*/@|x|+]y]).
But
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gl
b+lgl

|expikyg) - 1| = |2 sinzkyg|=<C

- {yl?
C XITdIgiFigiT .

Now

1 i
ﬁdx)#hzfzsfg;,r fx)

| [univerwml

2
x | explikyg) -1 i] . (A8)
Again we look at the x-integral first:

) |t 1]7 < f e LS
_[lxﬂ'e"p(‘k"g) ¢ | Rremmiray iy
=Cly[%

- dz)
CMZ/ PRSI
(A9)

That ky € L*(R®) now follows from (A8) and (A9) as (A7)
did from (A6).

APPENDIX B

We show here that the remainder in (5, 23) is O(?),
and those in (5, 26) and (5. 27) are o(k%"),

According to (5. 10) the remainder in det, By is
(x, B, x) = (x, AT IG"VAY) = (- AVy, AZIG"VAY)
= (¥, VG"VY) (B1)
and hence by (5.5’), (Al), and (2.1)

3 LV (x) V(y) (x) d(y
I(x,R1x)l\Clk’f(d")(dY) 1+ 1kIx-yl

L lklix-y)

- (V) Vi) i(xi+lyl)
=Clrf? f(‘l")(dw -+ XN+ 1y

<Cle [ (B2)
This justifies (5. 23).
We similarly obtain
(x, Rox) = (h, VG V), (B3)
and hence by (5. 5”)
| (X, Rox) |

<Clrf? / (dx)(dy) Wixw)tvlgr)li(xi'd’)(y

<Clef? f (dx)(dy) IV(;‘LV‘(i)“”,‘k_”;,—y'

|Rllx-y|?

. Ix-yl
O+ ix1)d+1yl)

_tRi(xI+1y])

<Cfel? f(dx @) [v® VO T T w Tyn

<Clr|? [lkl“"’ (@x)(dy) | vx) V(y)]|

txlslyiciel=l/

+ / (dx)(dy) | V(x) V(y) l]=o(k2) as k£ —0,

Igl+lyi=1rl"™

(B4)
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This justifies (5. 25) and (5. 27).

APPENDIX C
We want to solve the equation
(1= B)X=Xo (C1)

in the vicinity of =0, assuming that =0 is an excep-
tional point and we are in case 3 of Sec. 5. (Caselisa
special instance with n==0,)

The equation reads
(1 - By - ikBy~ Ry)x =Xy (C2)

and we write y= Py + Qy, in the notation of Sec, 5, Then
LimQx = (1 - By@)"Qx,,

which is finite,

Using a biorthogonal set of x,,, m=1,...,n+1,
ByXm = Xm», and 7, such that (n,, Xp) = Oy W€ may write
in dyadic notation

n+l n+{

P 2 X = 20 X (C3)
Then
X= QX 20 T Oes X) F st (Xt 1) (C4)

Since for m=1,...,n

0= (X, (1 - By) x):lkigré (Xm» Xo)

the coefficients (x,,, x) can be calculated with no diver-
gences. The only coefficient that leads to a divergence
at k=0 is that for m=n+1, We find, by (5.7) and the
fact that ¥,y =~ Ay,.4 violates (5.19),

J {dx%) V(X) p(x) = 4nik™t + O(1). (C5)

But insertion of (C4) gives
J (dx) VE) &) = = (| [@d%) VA1) (Xae, X) + O(1).

Expanding

Nm = ? ArmpXp (C6)

we have
J (@) VAn, =a
because of (5.19),
(Xnat, X) = k™t + O(1)
with ¢ #0. Thus also
v=ckt+0(1),

n+i, n+l

and hence

(C7)
where the vector ¢ #0,
APPENDIX D

We want to prove here first (2, 9/),

By Schwarz’s inequality and (2. 2)
{ V(z)!
f"m - zly-zi
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)Vz)l
Tx—zi®

< S

Therefore by Schwarz’s inequality, (2,3), and the fact
that Ve L,

f (dx)(dy)(dz)

L V)V
M f (dx)(dy) '———_L\x_y\

1/2 ’ 1/2
[ Juwr ]

(D1)

LVEIVi L Vi)
IX-ylly—2zllz~x|

. f (dx)[V(x)[[ f (dy)(dz)—L)-”—V—f)—]”2

ly -zl
(D2)
Hence the function
f%,3,2)=V® V) V@) |x-yly-z]x- 2]

is in LY(R?), It follows, as in the argument on p. 24 of
Simon, ? that as Rek —, in Imk= 0, for K defined by
(2. 8),

lim trK°=1im (:—}lﬂ—)s / (dx)(dy)dz) f(X, ¥, z)

|+ly-zf+]z-x))=

by Lebesgue’s lemma, As Imk —«, it follows by the
dominated convergence theorem,

In order to establish (2.10), we argue by Schwarz’s
inequality, for n= 4,

ltrim = [ te k262 | < || K2, || K72,
Lol 2rm=4y < [ et < &2 3 f & | =,

-2
TIA

where ||*|| is the operator norm and |{+||; is the Hilbert--
Schmidt norm, Furthermore,
| K2]|5 = trK2K?

= trKKTKTK = {tr (KK |V 2(tr (KTK)|1/2 = tr (KKT)?
and therefore

Jerk™| = te (KK | K|, (D3)

Now the second part of (2, 9) implies that
lim| & ||=0

Consequently, for (k| large enough the expansion
D(R)=exp <-22 %trlx”')

converges absolutely, and (2. 10) follows from (2. 9),
(2.9"), and (D3).
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A contraction of the structural group with respect to the stability subgroup is performed in a fiber bundle
with Cartan connection. The relation of the connections in the original and in the contracted bundle is
examined. As an example interesting for physics the contraction of the SO(4,1) de Sitter bundle over
space-time to the affine tangent bundle over space-time is discussed with the latter bundle possessing the

Poincaré group as structural group.

I. INTRODUCTION

It has recently been proposed'™ that a fiber bundle
with Cartan connection might be of considerable interest
in physics as a basis for a differential geometric de-
scription of strong interactions. A fiber bundle of
Cartan type constructed over space—time can be used
as the geometrical substratum on which a gauge theory
for the interaction of extended hadrons can be formu-
lated. The structural group G of the bundle plays here
the role of an internal dynamical group determining the
internal motions of extended hadronic states (being
associated with the fibers of the bundle) in a similar
way as the Poincaré group determines the kinematics
of pointlike objects in flat Minkowski space—time. The
particular bundle suggested for a gauge formulation of
strong interaction dynamics was a bundle with Cartan
connection constructed over a curved (in the presence of
gravitation) space—time manifold V, possessing the
de Sitter group SO(4,1) as structural group. In this
paper we study from a more general point of view the
properties of a fiber bundle E(M, F, G) with Cartan con-
nection constructed over a base manifold M of dimension
n possessing the fiber and structural group F and G,
respectively, and determine its relation to the affine
tangent bundle T (M) in contracting the structural group
G of the bundle with respect to a subgroup G’. The
bundle 7 (M) obtained in the contraction limit is here
regarded as a bundle associated with the bundle of affine
frames A(M) over M and possesses, like A(M), the
affine group A(n, R) as structural group. The affine
tangent bundle is a simple example of a bundle soldered
to M (see Sec. III below). This soldering of base space
and fiber is a characteristic feature of a bundle with
Cartan connection. In a bundle E(M, F, G) with Cartan
connection the fiber is isomorphic to the homogeneous
space G/G’, where G’ is the stability subgroup of G in
F, i.e., the subgroup of transformations of the space
F leaving a particular point fixed. The contraction of
the group G with respect to G’ determines how the
Cartan connection in E(M, F, G), being given by a differ-
ential 1-form with values in the Lie algebra of the
group G, decomposes in the contraction limit into a
component with values in the Lie algebra of G, and a
component related to translations. Both parts together
constitute the Cartan connection on the affine tangent
bundle T ,(M) to which E(M, F, G) reduces in the contrac-
tion limit. By this process a Cartan bundle with simple
or semisimple structural group G goes over into a
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Cartan bundle possessing as structural group the affine
group A(n, R) having an n-dimensional Abelian subgroup.

The plan of the paper is as follows. After recalling in
Sec, II the notion of a principal and an associated fiber
bundle over a differentiable manifold M and defining the
concept of a connection in a principal fiber bundle in the
general case, we discuss in Sec, III the properties of
Cartan connections, in particular following the treat-
ment given by Ehresmann* and Kobayashi.® In Secs, II
and III essentially known results are stated without
proofs in order to make the paper self-contained and
easier readable for physicists. In Sec. IV we treat the
group contraction process and study the resulting con-
nection on the bundle of affine frames. In Sec. V we,
finally, discuss as an example the contraction of the
S0(4,1) de Sitter bundle T%(V,) with base space V,, used
in Refs. 1—3, to the affine tangent bundle T ,{V,) over
space—time in the limit R — «, where R is the radius
of curvature of the standard fiber of the bundle T®(V,).
Correspondingly, the de Sitter frame bundle L?(V,),
being a principal fiber bundle over space—time with
structural group SO(4,1), contracts to the bundle of
affine frames A(V,) over space—time. A(V,) is a princi-
pal fiber bundle over V, possessing the Poincaré group
P as structural group with P =1S0(3, 1) being the group
of motion in each local Minkowski tangent space T (V)
to V,. The bundle A(V,) and the associated bundle 7' (V)
allow the discussion of a Poincaré gauge group as
studied in the framework of a Lagrangian formalism by
Kibble® and by Hayashi and Nakano.’ The familiar
Lorentz frame bundle L(V,) with structural group
50(3,1) is in a natural way a subbundle of A(V,).

11. CONNECTIONS IN A PRINCIPAL FIBER BUNDLE

In this section we recall some of the notions and
definitions well known from the differential geometric
literature.?®

A fiber bundle EM, F, 7, G, ®) is a differentiable mani-
fold defined by the following collection of objects:

(a) the bundle space E,

(b) the base space M, covered by a family of coordi-
nate neighborhoods {U,.} with the index 7 in a set J,

(c) a space F called the fiber (or the standard fiber),
(d) a mapping # of E onto M called the projection,
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(e) the structural group G of the bundle, being a Lie
group acting effectively and differentiably on F,

(f) a family ® of homeomorphisms {¢,} corresponding
to the open covering {U,} of M mapping in each coordi-
nate neighborhood U;XF onto 7'(U,). The property f
states that the bundle is locally trivial, i.e., is locally
the topological product of an open subset of M and F.
7' (x)=F, is called (ke fiber over x. Furthermore, one
has the following essential property: If xe U; N U, and
$,(x) is the differentiable mapping

¢{0): F— 1 x)=F,, 1)

being the representative of ¢, at x€ U; and, correspond-
ingly, if #,(x) is the mapping of the standard fiber into
F_as determined by the representative of ¢, at xe U,
then the mapping

P ()= 0,(x) 7' () 2)

coincides with an element g of the structural group G.
The family of mappings ¢,;(x) are called the {ransition
functions of the bundle E(M, F, 7, G, ®) corresponding to
the covering {U,} of M.

If F and G are identical manifolds and G acts on itself
by left (or right) translation, one speaks of a principal
fiber bundle over M which will be denoted by
P(M,G, p,®) or simply by P(M, G).

To give some familiar examples of fiber bundles, we
remark that the bundle of linear frames of a manifold
M of dimension n, i.e., the space of all frames A, with
origin v at all points of M,

L(JW):XQUM Ayy (3)
is a principal fiber bundle with structural group
Gl(n,R). Furthermore, the langent bundle

T(M)= U T (M), (4)

being the union of all tangent spaces to the manifold M
at all points of M, is a fiber bundle with structural
group Gl(n, R) and standard fiber R". If one regards the
tangent spaces T (M) as affine spaces on which the
affine group A(n, R) acts, one obtains the affine tangent
bundle, denoted by T 4(M) in the Introduction, possess-
ing the standard fiber R” and the structural group
A(n, R) being the semidirect product of Gl{(»,R) and R".

A fiber bundle E with standard fiber F is frequently
referred to as a bundle E(M, F, 7., G, P,d’) associaled
with the principal fiber bundle P(M, G, 7, ®) in the fol-
lowing way®: Let F be a manifold on which G acts effec-
tively as a transformation group. If E is identified with
the coset space B=(P XF)/G and 7 is the mapping of
B onto M induced by the mapping 7, of P onto M, then
one can construct’ a family of homomorphisms {(bl’} of
U,XF onto 7;(U;). In this terminology the tangent
bundle T(M) over M is the bundle with standard fiber R"
associated with L(M), and the affine tangent bundle
T,(M) is a bundle associated with the bundle of affine
frames A(M). In Sec. V below we shall encounter
another example of an associated bundle. In this case
the standard fiber is the coset space F=G/G’ with G’
being a closed subgroup of G. The group G acts effec-
tively on G/G’, Choosing G=S0(4,1) and G'=S0(3,1)
the de Sitter bundle T®(V,) constructed over the space—
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time manifold V, possesses as standard fiber a
Riemannian space of constant curvature,'® F= V],
isomorphic to the coset space SO(4,1)/50(3,1) and has
as the structural group the SO(4, 1) de Sitter group.

The bundle T*(V,) is associated with the de Sitter frame
bundle L*(V,), being a principal fiber bundle over
space—time with structural group SO(4,1).

As a final example of a fiber bundle we mention the
bundle of linear differential forms of degree g over M.
Let A T*(M) denote the exterior algebra over THM)
with 7*(M) being the dual space of 7, (M). A g-form on
M is an assignment of an element of degree ¢ in A TH{(M)
to every x € M. The fiber bundle D% M) of differential
g-forms is the bundle over M with standard fiber
F=R"A R™A +++ A R™ (g times) and structural group
® Gl{n, R) associated with the bundle of frames L (M)
over M. A g-form on M is thus a cross section of DY(M)
which can be in a local coordinate system x', ¥%, ..., x"
on UC M be expressed as

w= 2, W (vydxtadx2 +..ndxie,  (5)

s . il iz' o

,1<12<...<lq q

with w, ; ...; (x) denoting the differentiable coefficients

of w. We remark in passing that one speaks of a vector

valued ¢-form if the w; ;,...; (¥) in Eq. (5) assume val-

ues in an »-dimensional vector space V having the

basis E,, s=1,2,,..,7. Accordingly one writes

wy= 2wl KE®detiandxza . adxte, (6)
RS XILERE 12

In the case that the vector space V admits the structure

of a Lie algebra g, with E, defining a basis for g, the

form w, is called a differential ¢-form with values in

g.

A connection'! in a principal fiber bundle P(M, G)
over M is given by a linear mapping o, of the tangent
space T (M) to M at x into the tangent space T,(P(M, G))
to P(M, G) at u < 7' (x) with the properties that

Do (T M) =H,, (7

H, being the horizontal subspace of T (P(M, G)),
uck,,

(ii) dmo0, being the identity mapping, and

(iii) 0, depending differentially on u.

The subspace H, of horizontal vectors at #’, with '
=ug =R, u obtained from u by right translation'® in the
fiber with an element ¢ of the structural group G, is
given by

H,=H,=R,H, (8)

Calling the tangent space to the fiber at u the vertical
subspace of 7 (P(M,G)), i.e.,

T(F (M) =V, (9)

one obtains the following unique decomposition of any
vector X e T, (P(M, G)) into horizontal and vertical

components:
X=X +X, (10)

with X € V, and X, H,. (Compare the schematic draw-
ing shown in Fig. 1.)
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FIG. 1. Horizontal and verti~
cal subspaces in a principal
fiber bundle P{M, G).

According to Eq. (10) a connection in P(M, G) can be
defined by a differentiable mapping of T (P(M, G)) onto
T (F.(M)), the space tangent to the fiber at «, i.e.,
onto the vertical subspace of T, (P(M, G)), which is
isomorphic to the Lie algebra ¢ of the structural group.
This gives rise to a linear differential 1-form--called
the form w of the connection—with values in the Lie
algebra of the structural group of the bundle. The 1-
form w possess the following properties:

wludg) =g 'dg, (11a)

w(Xg) =g w(X)g, (11b)

with « ¢ P(M,G), mu=x, g G, and X ¢ T(P(M,G)). In
Eq. (l1a) dg is the element of T,(G) tangent to the group
G at g and ¢'dg is the element of 7,(G) tangent to the
group at the unit element ¢; i.e., g'dge ¢.'® Equation
(11a) states that udg, being vertical, is mapped into the
element of the Lie algebra corresponding to dg.
Furthermore, Eq, (11a) implies that w(X)=0 for X
being horizontal, Denoting the right translation of the
vector field X by R, X=Xg, we see that Eq. (11b) states
that w transforms according to the (inverse) adjoint
representation of the group G in g¢.

Hi. SOLDERING AND CARTAN CONNECTIONS

A fiber bundle E(M, F, G, P) * associated with a
principal fiber bundle P(M, G) is called soldeved Lo M
if the following conditions are satisfied*®:

(A) The group G acts transitively on F, i.e., Fis
the homogenous space G/G’ where G’ is the stability
subgroup of G leaving the point O of F fixed.

(B) dimF = dimM =n,

(C) The bundle E(M, F, G, P) admits a cross section
which will be identified with A,

(D) If T'(M) is the space of all tangent vectors to F,
at v¢ M for all x and T(M) is the tangent bundle over M,
then one can identify 77(M) and T(M) by an isomorphism.

The property D states that the fiber over x is tangent
to the base space at x for every ve M, T'(M) is a fiber
bundle over M with fiber R” and structural group
Gl(n, R)’, which can be identified with the space
(P’'XR")/G’, being a fiber bundle associated with
P'(M,G’)."™ Here the principal bundle P'(M,G’) is a sub~
space of P(M, G) obtained by restricting the homeomor-
phisms F — F_ of P(M,G) in such a way that O¢ F is
always mapped into v, i.e., into the point of contact of
fiber and base space at x € M., With the principal fiber
bundle P’(M, G’) with structural group G'is associated
in the usual way a bundle E(M, F,G’, P’), the existence
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of which was first shown by Ehresmann to define the
soldering in E(M, F, G, P),

Now let w denote the form of a Cartan connection in
P(M, G) (and thereby in E(M, F, G, P)], and let @ be the
restriction of w to the bundle P'(M, G’} [and thereby to
E(M,F,G’,P’)]. Furthermore, let g’ denote the Lie
algebra of G’. Then ® is a g-valued linear differential
1-form satisfying the following conditions:

wldg)=¢""dy, (12a)
w(X'g) =g DXy, (12b)
if ©(X)=0, then X’ is the zero vector. (12c)

Here u’'c P'(M,G"), 7'u’=x [with 7’ denoting the projec-
tion in P'(M,G")|, g'€G’, dg'e TAG’}, and X’

€ T(P(M,G")). Equations (12a) and (12b) state that @
defines a connection in P'(M,G’), and Eq. (12¢) implies
that any horizontal vector in P'(M, G’) is the zero vec-
tor. This last mentioned property is a consequence of
the soldering of E(M,G’,P’) to M.

Starting from Egs. (12a)—(12c), it is now simple to
specify uniquely the form w of a Cartan connection in
E(M, F,G, P) by the following g -valued differential
form:

w(X)=g"'HAX")g +g dg,

where g€ G, dge T(G) and X=R,X'=X'g with X
e T{P'(M,G")) and X T(P(M,G)). It is seen from Eq.
(13) that the restriction of w to P"(M,G') is @.

(13)

Let us now decompose the Lie algebra ¢ of G into the
subalgebra ¢’ and a vector subspace t :

g= g'tht, (14)

Then the tangent space T,(F) at O< F is isomorphic with
t. If, furthermore,

[¢, t]ct. (15)

T,(F) can be identified with /4 and there exists a linear
t -valued differential 1-form 6 on P’(M, G’), called the
form of soldering,'® with the properties'”;

6(X')=0 for X' T(P'(M,G"))

if and only if d#'(X")=0, (16a)

B(X'g ) =g 0(X")g’ (18b)

for all X' e T(P'(M,G’)) and g’ G,

Equation (16a) states that 6 vanishes for all vertical
vectors on P'(M,G’).

It can be shown® that if the bundle E(M,F=G/G’,G, P)
satisfies the conditions 4, B, and C, and if the Lie
algebra g of G and the Lie algebra ¢ ’ of the stability
subgroup G’ of G decomposes according to Eq. (14) and
obeys Eq. (15), then the bundle EWM, F=G/G',G,P) is
soldered to M (according to property D) if and only if
there exists at -valued linear differential form 6
satisfying Eqs. (16a) and (16b).
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The interest in the form 0 lies in the fact that if v’
is a g’-valued 1-form defining a connection in P’'(M,G’),
the sum

D=w’'+06 (17)

is a g-valued 1-form defining in a one-to-one way the
restriction to P'(M, G’) of a Cartan connection w in
P(M, G) [and correspondingly in the associated bundle
E(M,F=G/G’,GP) soldered to M|, The proof of this
statement, i.e., that & as defined by Eq. {17) satisfies
Eqs. (12a)—(12¢), follows directly from the properties
(16a) and (16b) and the definition of the connection w’ in
P'(M,G").

To conclude our review of Cartan bundles and their
soldering property, we finally write down the structural
equation of Cartan for the space E(M,F=G/G’,G, P),
i.e., (d denotes the exterior derivative),

dw +i[@,0]=9 (18)

with § being the curvature 2-form of the connection @
and [, | denoting the exterior product of forms with
values in a Lie algebra. Using in Eq. (18) the decom~
position (17) and separating both sides of the equation
into a g8 '-valued and a t -valued part, remembering
Eq. (15), and putting

ﬁ:ﬁg, +S—2i (19)
and similarly
[9’9]: [9) e]g' +[9’ e]i > (20)

one obtains the following relations, moreover, by
making use of the structural equation

dw’ +3[w’, 0=’ (21)
as defined by the connection w’ in P'(M,G'):

Q=0 56 6]y, (22)

Ao +3(w’, 8] +5[8,w'|=D"6=". (23)
Here

=0, -4[6, 6], (24)

denotes the torsion form of the connection and D’6
=d6 +[w’, 6] is the exterior covariant derivative of the
form 0 with respect to the connection w’.

If now the space F=G/G’ satisfies the condition
[t, t]C g (25)

as is the case for the physically interesting example of
a Cartan bundle treated in Sec. V as well as for the
discussion of the group contraction presented in the next
section, where we shall start from the assumption that
the fiber F=G/G' is a Riemannian globally symmetric
space, Egs. (22) and (24) reduce to the form
Qg' :Q"*'%[B) 9]’ (268.)

{_Zt =T, (26b)

If, on the other hand,

[t,¢]=0 (27

which is a condition valid for the affine tangent bundle
T (M) with fiber F =A(n, R)/Gl(n,R) =R", obtainable
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from Eq.(26a) in the limit of group contraction (see the
next section), one finds '

Qq. =9, (28)
=T, (29)

IV. CONTRACTION OF THE STRUCTURAL GROUP

Let us choose the fiber of the Cartan bundle
E{M,F,G, P} to be a Riemannian globally symmetric
space'® F=G/G’ of dimension #. Such a space is char-
acterized by the decomposition §=¢"'®t [see Eq. (14)]
of the Lie algebra g obeying

[e¢ 9]C 8", (30a)

[¢',t]ct, (30b)

[t,t]S 8, (30c)

where t is here required to be a vector subspace of g
with dimension #=dimG —dimG’'=dimM. The coset
space F=G/G’ has certain compact or noncompact
forms depending on the particular quadratic form with
signature (p,q) left invariant by the group G and the sub-
group G’. This quadratic form specifies on the one hand
G and G’ as particular metric-preserving subgroups of
the general linear group, and on the other hand deter-
mines the special form of a hypersurface F will repre-
sent if the space F is embedded into an (n +1)-dimen-
sional flat space of definite signature (p’,¢’) with p’ +¢q’
=n +1, In Sec. IV we shall discuss as an example of
particular interest in physics the case of a Cartan bundle
possessing the ten-parameter semisimple group G
=50(4,1) as structural group leaving a quadratic form
with signature {p,q) = (-~~~ —, +)={(4,1) invariant, cor-
responding, when represented in a space R}, :RZ',, to a
one-shell (hyper)-hyperboloid, V;, called the de Sitter
hyperboloid. This hyperbolic space is isomorphic to the
noncompact coset space F =S50(4,1)/50(3,1) being a
space of constant negative curvature regarded as the fi-
ber of the Cartan bundle E(V,, SO(4,1)/80(3,1),50(4,1),
P) constructed over a (Riemann—Cartan) space—time
manifold V,. In this section, however, we do not specify
the group G in detail except for demanding that G be the
identity component of a particular metric-preserving
subgroup of Gl{(r +1, R) admitting G’ [being similarly a
metric-preserving subgroup of Gl(»z, R)] as a subgroup
in such a way that the space F=G/G' is a globally
symmetric Riemannian space of dimension # =dimM in
accordance with the statement B of the previous section,
These requirements restrict the groups G and G’ to the
class of the special orthogonal groups, SO{p,q), having
dimension 3(p +q)(p +¢g - 1), Calling G’'=S0(p, q) from
now on, with p +¢=n, then G is either SO(p +1,q) or
SO(p,q +1), and the space F=G/G'is a Riemannian
space V, of constant curvature admitting a metric with
signature (p,q).

Let us now contract the structural group of the Cartan
bundle with respect to its stability subgroup G’ of the
point O in F. The Inonu—Wigner contraction of the
algebra ¢ =4’'® t can be defined as the following trans-
formation U(e) of g being singular in the limit e—~0,'°

U0)s'=g"’, (31a)
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U(0)t =0, (31b)
resulting in an algebra g~ =g'® t obeying

[g/: g,]; g’} (32a)

[a,t]Ct, (32b)

[, 1]=0. (32¢)

The algebra g is characterized by the fact that it has
the same dimension as ¢ with g4’ being a subalgebra in
8" as well as in g, and with ¥ being an Abelian invariant
subalgebra of 8 . Thus g is nonsemisimple.

Correspondingly the Riemannian space F=G/G' on
which G acts as a group of motion degenerates in the
contraction limit e — 0 into a flat space. The limit ¢—~0
corresponds to the limit 1/K — 0, where K is the con-
stant of curvature characterizing F. In this discussion,
where we did not specify explicitly the particular
special orthogonal groups G and G’, we can say that F
degenerates in the limit € — 0 into the space R’;'qz" iso~
morphic to E(p,q)/SO(p,q) with G=E(p,q)=1S0(p,q)
denoting the subgroup of the affine group A(n, R) in
n=p +¢q dimensions leaving a quadratic form with
signature (p,q) invariant. The group E(p,q)=180(p,q)
is the semidirect product of SO(p,q) and the space R} ,
possessing the Lie algebra characterized by Egs. (32a—
c). The Abelian subgroup is generated by the » elements
of t corresponding to translations. The group E(p,q)
=180(p, ¢), being the group of motions in R} ,, can in
the familiar way be parametrized by the (n +1)x(n +1)
matrices (} ) with A =(A})c SO(p,q) and v={v'}c R] .

The group contraction is thus seen to relate the bun-
dle with Cartan connection E(M, F=G/G’, G, P), asso-
ciated with P(M,G), having the fiber F=S0(p +1,q)/
SO(p,q) or F=SO(p,q +1)/S0(p,q) being curved
Riemannian spaces, to the special Cartan bundle
EM,F=R, ,, 18S0(p,q), A, (M), associated with the
bundle of affine frames A, (M) =P(M,IS0(p,q)), and
possessing a flaf space as fiber; i.e., E(M,R] |
ISO(p,q), A, ,(M)) is the subbundle characterized by
the signature (p,q) of the affine tangent bundle called
T ,(M) in Sec. II above, being obtained by restricting the
general affine group A(n,R) operating in T (M) to the

group ISO(p, q).

The expression (17) of a Cartan connection in P(M, G)
[or, more exactly, its reduction to P'(M,G’)| reduces
in the contraction limit in a natural way to the form

S=m+0 (33)

of a Cartan connection [usually called a generalized
affine connection® ] in T (M) with &’ being an 80(p, q)-
valued 1-form and & being a R}  -valued 1-form. Here
@ is the restriction to L, (M) of a 1-form & defining an
affine connection in A, (M), with L, (M) and 4, (M)
being subbundles corresponding to the signature (p,q)
of L(M) and A(M), respectively, having structural
groups SO(p, q) and ISO(p, q), respectively. The form
©7in Eq. (33) is the form of a linear connection in M;
more specifically it is the form of a connection in the
bundle of orthogonal frames LM(M) over M, the latter
regarded as manifold with signature (p,q) of its metric.
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The form @’ is unrelated to the form w’in Eq. (17). w
corresponds to a connection in P'(M,G’) with G’ viewed
as the stability subgroup of the point O in the fiber of
EWM,G/G’,G,P), whereas &’ represents the connection
form on LM(M) related to the base space (compare
Ref. 15 in this context), If the base space M of the
bundle is flat {i.e., M=R7 ) &'is integrable, i.e,
2’=0, where

o’ +i[&’, o']=%". (34)

However, Q' defined by Eq. (21) does not vanish even
if M is a flat space.

The form € in Eq. (33) is nof the fundamental 1-form
on the manifold M. Let us for later reference, introduce
the fundamental 1-form ¢ on M as the following R} -
valued form

¢ =wi(x)e,(x), (35)

where {e (x)}, i=1,2,...,n, represents a basis in

T (M). The exterior covariant derivative of § with re-
spect to @' is the torsion form [compare Eq. (23)],
i.e.,

g +{@’, 8l="T. (386)

Equations (34) and (36) are the structural equations of
Cartan for the affine tangent space over M. The latter
viewed here as a manifold admitting a metric with
signature (p,9). Expressed in terms of the generalized
affine (or special Cartan) connection (33) the structural
equations (18) read

Q- +D6=0"+T 37

with €' and 7 as defined by Egs. (34) and (35), respec-
tively. Equation (37) for the affine case is in complete
analogy to Egs. (19), (22), and (23) taking into account
the Abelian nature of the subalgebra t. The connection
(33) on T,(M) is called torsion free if D'§=0; it is
called flat if 2'=0, 7=0,

V. THE DE SITTER CASE

In Ref. 1 the de Sitter fiber bundle T®(V,) constructed
over a four-dimensional space—time manifold M=V,
of Riemann—Cartan type with Lorentzian signature
(= — ~, +) was introduced and proposed as a generalized
space providing the geometric framework for a gauge
formulation of strong interaction physics. Let us dis-
cuss in this section the differential geometric proper-
ties of this eight-dimensional Cartan bundle space and
the associated de Sitter frame bundle denoted by L?(V,)
in Ref. 1. Using the notation of the previous section,
we see that TR(V4) is isomorphic to the fiber bundle
[compare Fig. 2 for a schematic drawing, where also
the tangent spaces 7((F,) and T (V,), to be identified by
an isomorphism in the soldering of the bundle, are
shown and drawn separately for clarity]

TR(V,) = E(V,, F = 50(4,1)/50(3,1),50(4, 1), L*{(V,))

(38)

associated with
LR(V,)=P(V,,S0(4,1)). (39)
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/F‘:VZ(X)

=50(4,1)/S0(3,1)

/TO(F,)

FIG. 2. Schematic drawing of the fiber bundle T®(V,).

The fiber of TR(V,) is a four-dimensional Riemannian
space of constant curvature K =1/R? (R being the curva-
ture radius), i.e., a (4,1) de Sitter space, V,, iso-
morphic to the coset space SO{4,1)/50(3,1). With re-
gard to strong interactions the curvature radius of the
fiber V, was taken in Refs. 1-3 to have a fixed value of
R =10 cm characterizing the bundle TR(V,) as a whole
in a way similar to the way the base manifold V, [or
rather the tangent bundle 7(V,) over V,] is characterized
by the Lorentz structure associated with a fixed limiting
velocity ¢ =3 -10'° cm/sec. The structural group of
TR(V,) as well as of the principal fiber bundle L?(V,) is
the de Sitter group SO(4, 1) acting as a group of motion
in the fiber of T®(V,) and by left translation in the group
itself, i.e., in the fiber of LR(V,).

A basis for the Lie algebra of SO(4,1) is given by the
ten elements

M,=-M,, a,b=0,1,2,3,5, (40)
satisfying the commutation relations

1M gy Mgl =1 0e Mg F 01 Mg =Mog My =Mpe Moy (41)
with

Nep=diag(l, -1, -1, -1, -1), (42)

In order to exhibit the subgroup structure of SO(4,1)
more clearly and to exemplify the contraction with re-
spect to the stability subgroup SO(3,1) of the point

Oc F=V; (see Fig. 2), we introduce the elements
Hi:(l/R)MSi' (43)

With (43) and n,,=diag(l, —1, —1, —1) the commutation
relations (41) can be rewritten as

(M, Myl =0, My +0, My =13 My =0, My, (442)
iy Myl =040 =0y, 10, (44b)
i, n,]=-Q/R)M,, (44c)

which are of the form (30) with subalgebra g’ spanned
by the six elements M, 7,j=0,1,2,3, generating the
SO(3, 1) subgroup, and the four-dimensional vector sub-
space t spanned by the elements I1,, i=0,1,2,3,
corresponding to a four-parameter family of special

de Sitter transformations, the so-called de Sitter
boosts.

The de Sitter space V; on which SO(4,1) acts as a
group of motion can be represented by a hypersurface®?
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in an R} ,, i.e.,

£ = £ = —R® (45)
with £°=(£°, &', £, £, £°) e R} ,. SO(4,1) is then the group
of hyperbolic rotations in Ri'l leaving the quadratic form
(45) invariant. The space V] represented by (45) is
compact in its “spatial” directions t', 2, £3, £ and non-
compact in “time” £°. A set of differential operators
aeting in R} | and satisfying Eqs. (41) or {43) and (45)
is provided by

Lab(i)zi(ﬁaab—ibaa)y (46)

with 2,=9/8£%. When applied to a function defined on
V, the operators L ,(£) produce a result lying again in
the hypersurface V.

a;b:0!1;2’3,5’

Contracting now the algebra (44) according to the
prescription (31) of Sec. IV corresponding to the limit
R — and calling the elements of the Abelian subalgebra
t appearing in the limit P,, one sees that the algebra
(44) contracts to the algebra of the Poincare group P
=IS0(3,1) spanned by the elements M, and P, satisfying
the familiar commutation rules

i[MiJ"Mkl]:nikMil ;M= My -n,,My, (47a)

i[PyyMy)=n4P; =0, P, (4)

[P, P,]=0. (47¢)

In view of the replacement (43) corresponding for the
L, (&) to

;=(1/R)L, (&) %= P,=1i7,, (48)

where !E"’:(090,0,0y —R) denotes the coordinates of the
point Oe F, and 3,, i=0,1,2,3 being the differential
operators in a flat four-dimensional space (see below);
the quadratic form (45) can be represented as®

tigin, - PPR = - R (49)

with
P=t/R

approaching a constant in the limit R — «. Dividing by
R?, we see that the hypersurface (49) reduces in the
contraction limit to the hyperplanes £=+1, £f arbi-
trary, being the equations for two spaces Rj ;. Only the
one of these two hyperplanes with £° <0 (corresponding
to O¢ F,) is soldered to the base space, i.e., we have
to take the space R3 , with £2=~1 as a solution of Eq.
(49) in the limit R — o,

(50)

It is thus seen that the de Sitter bundle T®(V,) con-
tracts in the limit R — «~ to the affine tangent bundle
T ,(V,) over space—time, and the associated principal
fiber bundle L*(V,) contracts to the bundle of affine
frames A(V,) over space—time containing the Lorentz
frame bundle as a subbundle. A(V,) is a principal fiber
bundle with structural group ISO(3, 1) being the semi-
direct product of the Lorentz group SO(3,1) and
Minkowski space R}, (called M, for brevity) appearing
here in the limit R — = as a gauge group acting in the
fibers of A(V,) and T ,(V,). In the bundle TR(V,) with
structural (or gauge) group SO(4,1) the translational
degrees of freedom are contained in the vector subspace
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spanned by the II, being elements of the semisimple
Lie algebra (44).

Let us now discuss Cartan connections on T®(V,) and
T (V,), respectively, where TR®(V,) and T ,(V,) are
associated with the frame bundles L*(V,) and A(V,),
respectively. For reference to earlier work'~? let us
discuss spinor connections on TR(V,) [or T,(V,)], which
are required in the definition of a de Sitter gauge in-
variant (or Poincaré gauge invariant) differentiation
process for a spinor field defined on T*(V,) [or on
T .(V,)]. A spinor connection in T%(V,) is a connection
in the so-called spinor frame bundle S*(V,) over V,
possessing the covering group G =S0(4, 1) of SO(4,1) as
structural group. The homomorphism S®(V,)— L®(V,)
is a bundle mapping corresponding to the group homo-
morphism SO(4,1)— SO(4, 1) [see Eq. (61) below|. The
covering group of SO(4,1) is the group USp(2,2)=U(2,2)
N Sp(4, C) being isomorphic to a subgroup of Gi(2,Q),
the general linear group of 2 X2 matrices over the field
of quaternions. On the other hand, the covering group
of the Poincaré group is the semidirect product of
S1(2, C) and the translations in Minkowski space.

We now first discuss the de Sitter case. A connection
'® on TR(V,), associated with S?(V,), is given by the
following matrix-valued 1-form on V, (xe V,):

TR(x) = swR{x) M™ (51)

with w&(x) = — w¥(x) being the 1-form coefficients of the
Cartan connection w in L®(V,), and M* being a spinor
representation of the algebra of SO(4,1). The lowest-
dimensional representation of the algebra of USp(2,2)
is provided by the 4 X4 matrices [we keep the same
symbol as in Eq. (41)]

=/, ') (52)

with ¥ =(y%,9%), i=0,1,2,3, v*=7%"*}" being the five
anticommuting Dirac matrices obeying

=7, o rit=am® 1 (53)
with n“” as defined in Eq. (42).

The w&(¥) appearing in Eq. (51) can be expanded in
terms of the 1-form components w(x) of the fundamen-
tal form ¢ defined in Eq. (35) representing a complete
set of 1-forms in T}(V,). In terms of the coordinate
differentials dx* of a system of global space-—time
coordinates on V, (written with a Greek index) the w(x
can be expanded as

wix) =2 (x)dx*, (54)

where the sixteen fields A/(x) are referred to as the
vierbein fields. For completeness we add that the
covariant components of the metric tensor in V, are
given by

A CIRMESL P9 (55)

being a symmetric tensor field on V, possessing ten
independent components. The additional six degrees of
freedom at each space—time point x contained in the

AL (oc) refer to the freedom to Lorentz rotate the local
Lorentz frame e,(x), #=0,1,2,3, in T,(V,). After these
remarks we write Eq, (51) fmally as

TR(x)= 3w ()T, 5(x) M (56)

gulx)=
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with T'; & (x) = - T, &(x) denoting the 40 coefficients of a
Cartan connection in 7%{(V,). Equation (56) could,
furthermore, be brought into the form (6) by using Eq.
(54),

The form I'®(x) defines a gauge invariant absolute
differentiation process for a de Sitter spinor quantity
P, £ ={o*(x, £);47=1,2,3,4}, xe V,, te F =Viv)
defined on the bundle space T%(V,) and referred to a
particular local frame in S®(V,) called a gauge on T*(V,)
[being a system of moving de Sitter frames on TR(V,)
corresponding to a cross section of S®(V,) **|. It is
given by

Dy(x, £) =dylx, £) +iDR(x) dlx, £) (57)
with

d=dx*2, =w"x)?, (58)
where 2, = 2/8x* and

e=rp(x)2,, (59)

the latter denoting the Pfaffian derivatives. Here A‘;(x)
are the inverse vierbein fields to A’ﬁ(x) obeying
() AT (x) =6,

A de Sitter gauge transformation of ¢(x, £) is defined
by

x, £ = S(x) wlx, & (60)

with £“=[A(x)]2¢%, A(v)e SO(4,1), and S(x) € USp(2,2)
[both with v-dependent parameters|. A{x) and S{x) are
related by the equation

YA ()] = 6(\))/’78‘1(\) (61)
defining the homomorphism + S(x)— A(x) of USp(2,2)
onto SO(4,1). The gauge invariance of the differentia-
tion D in Eg. (57) entails the gauge transformation
property of the connection form I'*(x) according to the
formula

TR(x) = $7(x) TR(x) S(x) = iS(x) dS(x). (62)

This equation is analogous to Eq. (13} above,

We now investigate the decomposition of the connec-
tion form TR(v)=dx*T’(v) according to Eq. (17) using
Eq. (54), i.e.,

M) TR =T, R(0) =T, B9 (x) +T, 7 (x) (63)
with

T,F8°(y) =T, BloMY (64)
and

TR0 =T, B(x) ¥ (65)

denoting the Lorentz valued and de Sitter boost valued
components of fu"’(x), respectively. Clearly, the de-
composition (63) is not de Sitter gauge invariant.
Nevertheless, this decomposition is interesting in the
discussion of certain gauge fixing conditions which may
be enforced on a physical theory based on a Cartan
bundle formalism. To see this, we write down the
analog of the curvature form (18) in the present case.
In terms of the matrix coefficient T ®(x) the curvature
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expression reads

RR (x)=2,T R(x) =3,T,R(x) +i[T, ¥x), [*(x)]  (66)

where the second term on the rhs now refers, in con-
tradistinction to Eq. (18), only to the commutation in
the Lie algebra g of the bundle. By using Eq. (63) the
rhs of Eq. (66) decomposes according to Egqs. (19),
(26a), and (26b) into

RE(x) = RBL(x) +i[[, B 0(x), TR ()]
+D.T R (x) =D, T, R (x). (67)

The first term on the rhs of Eq. {67) is the curvature
constructed from the T',%87(x) due to the Lorentz sub-
group, the second term is a g’-valued contribution to
the curvature originating from T LB (%), and the last
two terms correspond to the torsion [see Eq. (23)] with

D;f‘,,R( t Wx) = auf‘um “(x) + i[fﬂuR (9"(x), f‘um t )(x)].,

(68)

A gauge fixing condition would consist of the assumption
that a certain term on the rhs of Eq. (67) is absent.

For exampie, gravitation gives rise to a similar term
as RW(\') correspondmg in this case to the g’~valued
connection form &’ on the Lorentz frame bundle L(V,).
It is thus an interesting question to ask whether the
strong interactions —provided they can indeed be
characterized by a curvature expression /{f,,(x)

derived from a Cartan connection—may possess an
integrable Lorentz component I',®'8”(x) in a certain
gauge, i.e., have a nanishing R¥,(x). We shall not in-
vestigate gauge fixing conditions and their effects on the
solution of certain equations relating geometrical and
matter quantities further in this paper, and we turn,
finally, to a brief discussion of connections on the affine
tangent bundle T ,(V,). Before we do so let us, however,
remark, in concluding our discussion of the de Sitter
bundle, that even if the base space of the bundle T%(V,)
is flat Minkowski space—time, characterized by A}(x)
=8/ and the rhs of Eqs. {34) and (36) being zero, that
desp1te these facts all contributions on the rhs of Eq.
(67) may in principle be present. As mentioned, it re-
quires the additional postulate of a gauge fixing condi-
tion, motivated by physics, to exclude a certain contri-
bution on the rhs of Eq. (67) having itself a well-defined
geometrical significance.

Returning to the generalized affine connection (33) and
expanding the R} -valued 1-form fin analogy to Eqs.
(35) and (54) for M=V, as

§=dx* vi(x)e(E) (69)

with (£; e,(2), e,(8), e,(D), eg(g)) denoting an affine base
in T (V,) with origins M(x)=(£°, £, £2, £3), the v I(x) are
Seen to determine a field of gauge translations in
T,(V,). A four-component Dirac spinor field ¢(x, £)
N{(p"(ﬁc £); A=1,2,3,4} defined on T,(V,), where the
first argument, x, refers to the point on V, and the
second argument, £, refers to the point in the affine
tangent space at x, can now be differentiated in a
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Poincare gauge invariant way according to the formula
[compare Egs. (51) and (57)]

Dolx, £y =dolx, £) +iT(x) p(x, &)
=dx"[3, +(i/2)T,;,(IMY +0i(x)7,] ¢(x, ).
('70)

Here we have represented the basis vectors e,.(E) by the
operators §,=2/3¢', i=0,1,2,3, affecting the second
argument of ¢{x, ). In Eq. (70) MY =(i/2)[y},¥’] are
the generators of SO(3,1) in the 4 x4 spinor representa-
tion (here with unprimed matrix indices to distinguish
them from the indices in the de Sitter case treated
above), and T, ;,(x) =~ T, {x) =A% (x)T,,,(x) are the
coefficients of the connection on the Lorentz frame
bundle with the first index turned into a global Greek
index. Finally, the sixteen fields zzf‘(x) are the contri-
butions related to gauge translations, i.e., to the shift
of the origin, M(x), of the affine frame in the local
affine tangent space at x< V,. Poincare gauge trans-
formations for a spinor field on T 4(V,) can now be de-
fined by

&'(x, ') = exp(= i (x)P ) S(x) p(x, E). (1)

Here the 4 X4 matrix S(x) describes aan-dependent
rotation of the local Lorentz frame e,(f) (generated by
the MY introduced before), and the exponential factor
represents an x-dependent {vanslation [with parameter
v(x), and P, as defined in Eq. (48)] of the origin of the
local frame in the local affine tangent space at xe V.

Restricting the gauge group ISO(3, 1) to the homoge-
nous Lorentz subgroup, i.e., disregarding gauge trans-
lation, Egs. (70) and (71) assume the following form
where we have, furthermore, made use of Egs. (54),
(58), and (59), and kept the same symbol for the spinor
¢ but dropped the now superfiuous argument £

D' p(x)=dx*[2, dlx) +(i/2)T,, ,,(x) MY ()]
= () [0, +(/2)T 5, (x) M) (%), (72)

¢ "(x) = S(x} d(x). (73)

Equation (72) represents the usual formula for the
covariant differentiation of a spinor quantity, ¢(x), de-
fined on a curved space—time manifold V, with Eq. (73)
describing the effect on ¢{(x) of a change of gauge, i.e.,
a transition to another moving Lorentz frame on V, or,
synonymously, a transition to another cross section on
the Lorentz frame bundle L(V,) over V,, Furthermore,
the &;{x)}= w*(x)T,;,(x) appearing in Eq. (72) define a
connection in L(V,). Equation (72) can be viewed as
resulting from the Cartan connection (33) with 6 being
identified with the fundamental 1 -form ¢ defined in Egs.
(35) and {54), i.e.,

@' + ¢ inspinor torm (i/Z)wk(x)]_"k”(x) Mii +wf(x) ek(x),
(74)

the latter being identical with the operator D’ of Eq.
(72) when e,(x)=3,, where now the 3, can be identified
with the 7, introduced before. Thus to each generalized
affine comnection (or special Cartan connection) (33)
corresponds in a unique way a linear connection @’
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which is because of historical reasons often also called
an affine connection.
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transformation group in Ty(F)] which can also be used to as-
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the fiber of the Cartan bundle, the latter belonging to the fiber
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Since the structural group of T,(M), as discussed here, is
related to the special orthogonal group SO(p,q), one also re-
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The solution of the covariant inverse problem of the calculus of variations (that of finding a Lagrangian
for a given set of dynamical equations) is presented as a generalization of the flat space formalism of
Atherton and Homsy. Known Lagrangians such as those for the complex scalar field, vector gauge fields,
and Einstein’s equations are used as examples. Additional insight into the formalism is provided by new
examples that include a two-tensor theory, a method for obtaining conservation laws directly from

dynamical equations, and 2 Hamiltonian formulation for higher order, nonlinear, differential equations.

INTRODUCTION

The idea of using the calculus of variations to obtain,
from a variational principle, a dynamical system’s
equations of motion is well known. Briefly, the deter-
mination of the stationary points of a suitably chosen
functional, the Lagrangian, yields the equations of mo-
tion. Until recent work by Atherton and Homsy,' (AH),
solution of the inverse problem, finding the Lagrangian
whose stationary points are described by the equations
of motion, depended largely on the skill and intuition of
the investigator. Atherton and Homsy’s procedure
allows one to construct a variational principle for any
given set of equations, Their paper cites applications
to nonlinear equations in flat space.

The major purpose of this paper is to present the
generalization of Atherton and Homsy’s methods to
tensor equations in curved space—time (Sec. I). The
paper’s secondary purposes, illustrating the potential
power of the new formalism, include discussions of
Noether’s theorem (Sec. III), the construction of a
generalized Hamiltonian mechanics directly from the
equations of motion (Sec. IV), and the presentation of a
two-tensor theory of gravitation (Sec. IID),

|. FORMALISM
A. Inverse problem of calculus of variations

The solution of the inverse problem of the calculus of
variations is best approached within the context of func-
tional analysis. Consider an expression of the form

Fl{iy)= [ N(y) ¢dV =0, (1)

where the slash, |, denotes the canonical variational
procedure, N(y) is a differential operator acting on a
variable v, and ¢ is the variation of y. The fundamental
lemma of the calculus of variations provides the result
that

N(y):o. 2)

This is the Euler—Lagrange equation. From the more
general view of functional analysis, one could read the
| in Eq. (1) as “an appropriate derivative operator, ”
while ¢ is regarded as an arbitrary element of function
space.
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Atherton and Homsy' show that the differential opera-
tor needed on the left side of Eq, (1) is the Frechet
derivative. It is defined on the function spcae and is a
higher order abstract analog of the ordinary derivative.
We give an operational definition of the Frechet deriva-
tive as follows. Consider a general tensor operator,
N*y5;95 4} ¥5,4.). (Capital letters A, B, - - - indicate
any number of tensor indices. A, B, :-- will be raised
and lowered by g*® and g,,. Greek letters p, v, -
range over space—time, A repeated index of any type
implies the summation convention. The comma denotes
a partial derivative with respect to the indices to its
right.) The operator N* may be of any order,

With these conventions the Frechet derivative of the
operator N* is defined as

N0, ﬂ;rg(lgN"[(ya +edg),n] - IENA(yB,,o)- (3)

Here the capital Greek indices II, A, -- - signify the set
of all combinations of tensor indices, I ={None, u,
uv, wvp, ---5. For example, if N* is a second-order
differential operator, Eq. (3) is shorthand for

1
NAIB(bB:lei-IQ(zNA[(yB +tedyg); (v +€¢B),u; (vs +€¢B),uv]

1
- 'E'NA(TB; Yo,us ,"B,uv)>'

As with other index types, the summation convention
will be used for pairs of capital Greek letters, Equation
(3) is

NAqubB:-;E—{NA[(yB +€f7)3),nl}1 . @)

€0

Equations (3) and (4) define the Frechet derivative of the
operator N* in the direction ¢,.

Now consider the functional F defined by
F= [ ya [ N*O9g o)=g)'/2drd’x, 5)

where A is a parameter that is homogeneous with yp .
We shall show that the requirement that the Frechet
derivative of F be zero, F'2¢, =0, yields the Fuler—
Lagrange equations

N4yz)=0. (6)

In the process, we will obtain a set of conditions that the
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operator N* must satisfy in order to be obtainable from
this type of variational principle. Following AH, opera-
tors satisfying these conditions will be called potential.
It turns out that operators whose highest order is odd
cannot be potential. Furthermore, the conditions for an
operator to be potential are quite restrictive., Fortunate-
ly there is a technique for formulating a variational
principle in these excluded situations. AH called this
second principle the composite variational principle.

We begin by taking the Frechet derivative of Eg. (5),

FIEQ«)B
2
HE(/(VA+€¢A/ NAMyp +edp) ol (- g)”zd)\d")

(7
or
F'8g= (a4 f N4(Ayg)dn +v, ‘f'OlNA“Bd)Bd)\)
x(=g)/ 2d%x. 8)

Here the A in the superscript AB is a reminder that N*
is a functional of Ay,. Now define the adjoint operator
N4 such that

[oaNABo (- ) 2dbx = [ NB Ay (=)' 2dx,  (9)

for all functions ¥4 and ¢4 in function space. Using the
adjoint in Eq. (8) we obtain

F%,= [ (04 [, NAOyg)dn + 05 [ NP y,ad)
X(=g)"/ %d*x.
We require that the operator N*'# satisfy the condition
oA N4 Bop(= ) 2dtr= [ o4 N* Fypl~ ) 2 ate. (11)
Referring to Eq. (9), we see that this implies that
JOANH By (= P dix= [ N7 Hyu(=0) 2.
Substituting Eq. (12) into Eq. (10) gives us
F'n=[(oa [} N*yglan + 4 [ N*"5yzdn)
X(-g)/2d*x,
Note that the Frechet derivative in Eq. (13} is

NADE,, :_BNA(M’B)
“ET 2ye) a
That is, for a second order operator
__ant Oos) + ANt
Vo= 300 T a0,
N aNA
a(AyB),uu
Substituting the identity

(10)

(12)

(13)

(/\3’5)'11 (14)

NAIRB (’\ya)

(A.vﬁ),u.v‘

d
NAMByB :ha_A_NA()LyB)

= L[Ny - NAGLY) (15)

into Eq. (13), we obtain
FiBg,= / 9 f
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DN Ay ) Jdn (= gy 2 d*x.  (16)
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This becomes
F3¢,= ¢ N v - g) 2 d'x.

Setting F'%4, =0 implies N*(y;)=0, since ¢, is arbi-
trary. Therefore, the conditions that N* must satisfy
to be called potential are embodied in the symmetry
condition

(17)

f b NAnsgvbB(_g)l/qurz ."¢AA7A18:‘,\H(_g)l/zd»dl,' (18)
Now let us derive an explicit expression for the sym-

metry condition. Using Eq. (14) we can write

N4
/j)ANm bpl~g) W2ty ~/ZDA 95 th =) 2d, (19)

The individual terms of the mght—hand side of Eq. (19)
may be integrated by parts. If we require that the sur-
face terms vanish on the boundary of the domain of in-
tegration, Eq. (19) becomes

ﬁ)A IVAlB([)E("g)‘/Zd‘l,VJ
A
=2, (- 1)‘“/((—,@”%0,,31\] ) Bpdiv.
i Vp,ul.n

Here [il| =0 if there is an even number of indices and
111 =1 if there is an odd number of indices. The ex-
pression in the parenthesis on the right side of Eq. (20)
is the adjoint operator. From Eg. (18) we see that the
symmetry condition requires that

(20)

ANB
AlB, _. 11 1/2 1/2
Ny = 2 (= 1) M= g)” (( & s )m
or
ANA aN?
2 o= 5 (=1)'T(= g)”z(( L,r)llzm,x,l )
T < AT

(21)

On comparison of coefficients of Y, to arbitrary power
of derivative 11, we obtain

anN4 L +A
T __1 lnd\t( >
PvB o &\I( ) A

B ANB
X(-s) l/2<(—g)1/2?'\’/4 TIA) ’
Ya, LA

Here ("3") is the Bernoulli symbol involving factorials
of the number of each type of index.

(22)

As an example of the conditions expressed in Eq. (22),
we list the symmetry conditions for a second order
operator:

anN4 TP_’EB_ _(_:g)-l/2[<(._;’r)l/2 Ng )

R}’s 33”,4 ayA,u i

aN4 ANB AN

S T "2<( 2)'”*) » (23)
Ve VA < AU
aNA aNB

The requirement that the surface terms obtained in
integrating Eq. (19) by parts vanish leads to a number of
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boundary terms of the form
N4

aya,n

-0, (24)

for all [l on the boundary of the region.

From Eq. (21) or (22}, we see why there is no poten-
tial type variational principle for odd order equations.
The presence of the (—~1)'"! on the right-hand side rules
out the possibility of odd order equations satisfying the
symmetry conditions. Furthermore, as illustrated by
Eq. (23), the symmetry conditions are quite restric-
tive, Thus it is convenient to have a procedure for con-
structing a variational principle that avoids the restric-
tions of the symmetry requirement.

Such a procedure is the formulation of the composite
variational principle. Suppose we have an operator
N*(zg) of any differential order. Obtain an associated
set of variables ¢, and form the functional

F=— {‘z‘ANA(zB)(—g)l/zd"’x, (25)

Now take the Frechet derivative of Eq. (25), treating
"4 and z,4 independently,

Flol /(vﬁe,p,,)mza+e¢5)(_g)*/2d4x . (26)

€=0
Fl= / :,/;ANA(ZE)(—,({)I/qux + f 7)ANAIB¢B(—g)l/2d4x.
(217)

Introduce the adjoint operator, N2'4, into the second
integral in Eq. (27) to obtain

f/ YaNA(ap)(=g) P dix + [ ppNE o, (~ g) /2y,

(28)
Since i, and ¢ are arbitrary functions, Eq. (28)
implies
NYzg)=0 (29)
and
NE4p 20, (30)

when 120, The price paid to obtain Eq. (29) from a
variational principle, when the symmetry conditions
need not be satisfied, is the introduction of new vari-
ables v, satisfying equations of motion given by Eq.
(30). Only if Eq. (30) and », are physically meaningful.
entities can this procedure be allowed in physics.
Examples will be given to illustrate this point later.

B. Frechet derivative—covariant form

We know that for an integral expression in curved
space—time to have meaning, the integrand must be a
scalar density. It is a straightforward matter to show
that an integrand involving the Frechet derivative, for
example, in the expression

AN 12 4
Vagy o ben(-2) " d,
Ya.n

is a scalar density. However, the individual terms in
this integrand do not possess tensor character because
partial differentiation is not a covariant operation. In
certain applications it is convenient to have all quanti-
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ties expressed covariantly. Re-expression of the
Frechet derivative in terms of covariant derivatives
may be illustrated as follows. For a second order oper-
ator N*(v 5 ¥5.,; ¥5. ,.) whose Frechet derivative is
A A A
oN + N dN

NABg +
‘ ¢B a-\‘B ¢B ayB,u ¢B,u. ayB,uu

¢B,uu’

write down the definitions of y,,, and yz;,,. Now using
these definitions and the chain rule, express dN*/3y,,
ON*/2y, ., and aN*/2v, , in terms of covariant deriva-
tives and Christoffel symbols. The result may be re-
grouped into

A 2 A A
ON ¢, + N . ON’
a-VB ayl’.‘i;u ’ ayB;uu

NAE = Gpiuve  (31)

The general expression for an operator of any order is

anN*4

ag, _°
N ¢Bnava~n

- (32)
Investigation of the transformation of the individual
terms in Eqs. (31) and (32) under general coordinate
transformations vz — y’5 =¥'5(x") shows that the quantity
AN*/2v,.n(=2)"/? transforms as a tensor density of the
type 747", One may show that the presence of the
covariant derivative in Eq. (32) does not affect the inte-
gration by parts procedure used in obtaining the sym-
metry conditions in the previous section. For example,

0=[[(-g)/2x*y,] d'x
_ / (XAu YA);U(—g)'/2d4.\‘
= [ XA Y (=) P+ [ XY, (- 0) 2 dx,

Therefore, one may rewrite the symmetry condition,
Eq. (22), as

aN* nA\/ an®
pcama (1))
.o %}( ) AJ\8v4qa ‘A (33)
Il. EXAMPLES

A. Complex scalar field

As an example of the use of the composite principle,
consider a complex scalar field . As the auxiliary set
of variables choose the complex conjugate )*. Then the
variational principle, Eq. (25), becomes

F(, 4%) = [¢*N(g) (= o) 2 atx. (34)

Therefore, from Egs. (29) and (30), the Euler—
Lagrange equations are

N(3)=0 and N'(yp*) =0,

Thus if the scalar field satisfies the Schrodinger
equation

N@p) = +(2m)" v = Vix,y,2)y +ip , =0

with %=1, m the particle’s mass, and V a potential
function, then £q. (34) is in flat space,

Fy, %)= [[ ¢*@m) V% — p* vy +iyp*y Jd*x.  (35)
Computation of the adjoint operator N'y*=0, yields
@m) U ~ Vi - ¥, =0,

We note that the adjoint equation represents a parti-
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cle whose energy is the negative of the original particle.
Since this equation is not potential, only the action given
by Eq. {35) and the composite principle may be
considered.

B. Gauge fields

Consider the case of a space—time vector field that
also possesses an internal transformation group. Let
Y; be a space—time scalar field? that transforms under
an internal group as

Sd)i = iGALAji d)p
where the L./, are a particular matrix representation’
of the group and €* are transformation parameters. It
is well known that fields B*, must be introduced to con-
struct the covariant derivatives of §;. From BAu, which

does not transform like a representation of the internal
group, one constructs field tensors, G* that do;

[ins ]
A _pA A . A c
G*,,=B*, ,~B*, , +igC"; . B? B°,.

Note that CABC are structure constants for the internal
group and recall® that

Giw = V0w —QiL 4" By,
(LayLgl;=CCupLi,,
LABc:"CABc,
GAuv:BAu:v _BAv:u - fgcAacBBuBcu-
Now allowing ¢*? to be a group metric that may be used

to raise and lower internal indices, we consider the
sourceless field equations for the field B*,,

NAu, — GAuu.
:GAMV'V+ig.cA BCVGBLLU:O. (36)
H BC

In this section, the index pair A u plays the role of the
index A in the previous sections., One verifies by sub-
stitution that Eq. (36) satisfies conditions (23). Accord-
ingly, we have the result that the gauge field equations
(36) are potential. Equation (5) becomes

F=[Ba, [ N*(B2)(-g)/2drd’x, (37)
and accordingly the Lagrangian / is

[ =(=)/? [ B, N**(1B",)du. (38)
To verify that this is equivalent to the standard gauge
field Lagrangian given by

%(_g)l/ZGAuUGAuV’ (39)
proceed by substituting Eq. (36) into Eq. (37). After
integration of the first term of the resulting expression

by parts over space—time, perform the indicated A
integration. The terms regroup immediately to (39).

This example is typical of most of the Lagrangians
obtained from field equations. They are the expected
ones, modulo an integration by parts over space—time.
As a general rule, the standard Lagrangian may be ob-
tained by integrating by parts so that the differential
order of / is minimized.

C. Einstein’s equations

The verification that Einstein’s equations are poten-
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tial is a straightforward but tedious exercise. Defining
I,, as the Frechet derivative of R,

oR 3R aR
I L= {34 + By 4 — e
w agaﬂ.ae agaa,y faﬁ,r agaB,ro ,fali,rb;
we find that,*
qu = %gaﬂ[;fae; (wy) ’fau; v8 "'fow;u-@ +fuv;aﬂj' (40)

Using Eq. (40), the Frechet derivative of Einstein’s
tensor, G,,, may be calculated to be

Guulaufpo:[uv—%guvgpc[po_%f;wR +%guvRanaB' (41)

Noting that the terms in G, are all of the same order
in A, A}, (i.e., the order of g*” is A™') we find the
Lagrangian to be

1
L=g" [ MR, -2, R)=2)"/*an.
This simplifies to
L==-3(-g)"*R,

immediately,

D. Two-tensor gravity

So far all the Lagrangians discussed were well known
examples. As an example of the possibilities of generat-
ing new theories from the formalism developed, con-
sider the case of Einstein’s equations but use the com-
posite potential method. Taking /*” as a symmetric
second rank tensor, the associated field, we write a
composite Lagrangian

L=(~2)"2f*(G,, +3A g,, —«kT,.). (42)

Here G,,, A, «, and T,, are the Einstein tensor, the
cosmological constant, the gravitational coupling con-
stant, and the matter stress-energy tensor respectively.
All indices are raised and lowered with g** or g,,.

From Egs. (29), (30), and (41), the Euler—Lagrange
equations are

Guu +%Aguu:KTuv:
as desired, and
0:Iu,u -%guul—%fuuR +%guufacRpo

0T 56
aguu ¢ (43)

A
- -z_'fuv _.fWK

Note /=1,". It has been assumed here that no deriva-
tives of the metric appear in 7,,. Observe that while
the equation for g,, is highly nonlinear, the equation
for f,, is linear. Letting

yuvs.fuv ‘%guv.rg
and considering the special case where

yup;o = TI-L :0’
we find that Bq. (43) reduces to

Dzyuv - A(’)’uu - %ﬂuu'}’) :Juv

= ooy le (44)

uv
2

in the limit of flat space. Writing Eq. (44) in terms of
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its irreducible tensor components I' ,, and 7,

Y= Yuvnuu’

T =Yy — sN,07s

we find
Uz'}/ +Ay:J:JWT7”", (45)
Dzr‘uv_Ar‘uu:Juu_%nou' (46)

If we consider the particle fields in T,, in Eq. (42) as
part of the Fréchet derivative, then the additional
Euler—Lagrange equations must be the particles’ equa-
tions of motion.®

I1l. CONSERVATION LAWS

The formalism developed offers the possibility of
obtaining conservation laws directly from equations of
motion. To explore this possibility, we will briefly re-
view Noether's theorem® and then extend it to cover the
present situation.

Let / be a Lagrangian density that is a function of
some fields v, and the derivatives of these fields y, j.
Then under a coordinate transformation, x* —x™
=x* +t*, the change in /, 3/, is given by

P _
L 5.‘,’A,ns (47

5/ =

- ayA,II

where Ey,l is the change in y, under the transformation.
The variational derivative of /, 6/ /6y, is given by

5_1:%;(_1)'“'(_81_)’“. (48)

6y 4 Va4,
Since / is a scalar density of weight +1, we have

8 =-(L¢E) . (49)
Combining Eqs. (47), (48), and (49), we obtain

T 5 Sy o ol
e Sy, l-f = D (=1)1F =
6y 4 Va [ Ls nZ,Je( ) 373'9(33’3,1;% )J!].u -

(50)
Whenever vy, is an absolute object and, 531,4:0, a con-
servation law, /* =0, follows with

_M_)H, (51)

33’B,une

- v _ 5 (- 1 lI‘lI6 (
LE HZ’..e (-1) Va0
being the conserved quantities.

Equation (51) may be expressed in terms of the equa-
tions of motion themselves, Using Eq. (5), we find

M= —/ ' dx[(—g)”zy"NA(AyB)g“

+ 25 (=1)"™'5y ((-g)”zv“M) ]
e #e " 9¥s,une /,n

Defining M4 as
1
MA: fo dANA(AyB),
we have

- _[(_g)l/zyAMAEu

— - oM
+ (—l)m'é (_ )1/2 A A ) ] 52
nL,e ) (—g)% 395 wme ) .n (52)
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Note that the conserved quantities have been expressed
as directly calculatable relations involving the field
equations and the transformations. Thus, if a set of
field equations is invariant under either the Lorentz or
Galilean groups, Eq. (52) will immediately give the
conserved quantities, the momentum, the energy, and
the angular momentum of the field.

As an example of the usefulness of this section, con-
sider the case of a second order equation in one variable
that we may write as a power series,

N=N&,,6 d,d)=a & _d™ !0, (53)

xx9 n,m,1

The condition that N be potential requires that n =0, or
n=1, and that la, , ,=(m +2)ay ., ,.,. Substitution of
these conditions into Eq. (51) using the symmetry group
given by translations of the origin (& = - & _£%; £*=¢;
t*=¢f, where € and / are constants) yields

t:—(l+1)'1a0'm,,<1>'"1<1>“1—(m +2)-1a1‘m,0¢m*2x'

Treating this equation as a power series in &_and solv-
ing for &, one has obtained a solution of Eq. (53) via
a quadrature.

IV. HAMILTONIANS

The formalism we have presented, which enables one
to write Lagrangians for a given set of equations, may
be extended to give a treatment that is analogous to the
customary Hamiltonian approach. This treatment may
be developed using the potential and composite princi-
ples. We shall present the results for both variational
principles here.

Consider a potential operator N‘(yB;yB;n) that is now
expressed in terms of the field variables and their
covariant derivatives., As we have seen, the Lagrangian
for this operator is

1
L = (—g)”zyA fo NA()\yB;yB;n)d)\-

In this section the range of II is restricted to exclude
the case of no indices. We define the quantities p2™ by

BN 1/24_a /2 g4
ﬁ (~g) dx-aysmﬂ( 2 2 dx. (54)

Since Lagrangians are only specified up to a complete
divergence, there may be times when one may not be
able to express the y. in terms of the p2", This never
occurs when complete divergences are added to / so

as to minimize its differential order. The use of an
integral expression to define the p®" carries with it

the assumption that / has been expressed in its lowest
differential order and we indicate this by writing

an:* a[. *,
9Yg:n
— (55)
an:*(—g)l/zyJ dX *.
0 ayB;ﬂ

Thus for a potential operator N*(y,;¥,.,; ¥,.,,) We have
two “momenta”

1
, IN®
p“:*(—g)‘”yuf 5y A
o

vie
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and

1
('3
pvua:*(_g)llzyuf aaN dr .
0

Sviop

We now define the quantity H(y z, p&"),
H{y g, PBH):PBnyB;n - (¥g,¥5n)- (586)

From this, we form the variational principle
F= ‘{'[pBHyB;n -H(yB,PB")] (—g)”zd‘*x,

and integrate the first term by parts to put the deriva-
tives on to the p&7,

F= f{; (1) pBT Ly, -H(S’B,PM)]} (=g 2d*x.
(57)

Now treat the vy, and each p®" as independent entities
and calculate the Frechet derivative,

F! :,/{;E [(-l)ml(‘l’Bn;n Vs +p8n;nd)8)

_<.a_l.i_ Zbe + aaplgﬂ ‘I’Bn)]}(—g)l/zd4X. (58)

Vg

Integrate the first term in Eq. (58) by parts and regroup
to obtain

oH - dH
F :f[q,ﬂn(yB;H - W)ﬂpa(%, (—1)In1psn;n ST )]

X(=-g)/2dix. (59)

Since each of the *" and §, are independent, arbitrary
functions, we have on setting F'=0,

oH

W:ya;n (60)
and
oH :Z(_l)lnlpsn'n_ (61)
a_\)B il ’

Thus, for a second order operator, N*(y,, v,.,), we
have

oH

apm =Yu;09

oH

apwp :yv;op’

oH v v

dy ==p a;u +p Up;ua‘
VB

The formalism just presented may be easily shown to
be consistent with the Lagrangian formalism. We pro-
ceed as follows: Into Eq. (61) substitute

oH ! Lan4
__:_(_g)l/ZGBAf NA()\."B,AyB;H)d)\_yA/ Aax
ayB 0 a ayB

(62)

and

1
aNA
PP n=x(-g)"® yAf dr) (63)
r95’13;1’! B

o]

obtained from Eqs. (56) and (55) respectively. The re-
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sult is

— 5B INA()\ A l—LNA
A Ve AVpin) dA =y 4 2 dx
) 0 (yB
1 A
IN
—(=1)'mfy / .
(-1) (“ ATy 8 (64)

The x x notation is omitted for convenience. Transpose
the second term on the left to the right and recall the
symmetry condition, Eq. (22). We now have

= 0%, [ TNA g, \vgm)dh = [ NFAQy ). (65)

We may now use Eq. (15) to reduce Eq. (65) to

1
d
——[ANP(A\y 4, ¥ 4;0) [dA =0
[ d)\ A ATl J
or
NB(y 4y Va,n)=0.

Construction of the Hamiltonian type formalism in the
composite case is similar to the procedure just de-
scribed. From the Lagrangian,

L = ("g)l/szNA(y}gy yB;H)J

define the guantities

*s (66)

where as before, the x x notation indicates that the
Lagrangian has been expressed in its lowest differential
order. Define an H(v,, vy, p%"),

H( gy ¥5, p°7)
= (_g)l/z[panya;n - I"ANA(,,VB;,\'B;H)I-
Form the variational principle,
F= ,f‘(—.‘s’)l/z[/’m,\'a;n - ”AJVA(.VB! ."B;n)]d4X,

and continue exactly as in the case of a potential opera-
tor to obtain the following reiations:

dH e Imi B0

Py~ % U (67)
oH

Ef[)Bn = Vg;n» (68)
2H

o =0. (69)

As in the potential case, consistency with the
Lagrangian formalism is easily demonstrated. Substitu-
tion of the appropriate definitions in Eq. (67) yields

ﬁBIA I’A - 0,
while from Eq. (69) it follows directly that
N(.VB’ Vg ;r[) =0.

As an illustration of the formalism discussed for the
potential case, consider the Korteweg—de Vries (Kdv)
equation. A Lagrangian for this equation’ is

1 K 1
[=3P P ,+%d +d & +:% 2.

As noted earlier, the Lagrangian must be expressed in
its lowest differential order. Therefore, integrate the
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third term by parts and use as the Lagrangian

i:%¢,x¢),t+%§_q’,x3-%¢,1x2° (70)

From the definition, Eq. (55), we find

pXX:_Q

These expressions are easily inverted and one obtains
for H,

szprpt - %(p!)i) _%(px‘x)Z.

For
dH
apBT =Y¥g;1s
and
dH
ay :%/-(_l)ml(psn)m,
B

one obtains
2px - 4(.0')2 :q>,u
2p! =
_pxx =% ,XX3
and
_pt,t _px’x +p“,xx:0,
respectively. The first three of these expressions re-
peat the definitions of pB™, while if one substitutes for
the p2" in the last, one obtains the KdV equation in a
form given by AH.

V. CONCLUSION

In the article we have shown how the valuable methods

of Atherton and Homsy may be extended to find
Lagrangians for any nonlinear equations involving
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fields® in curved spaces. Additionally, we have shown
how conservation laws and a Hamiltonian formalism may
be obtained from these {echniques.

We believe that the potential application of these meth-
ods, which enable Lagrangian techniques to be applied
to a wide range of physical problems,; is enormous. The
examples used to illustrate the methods, including the
new method of solution of a large number of nonlinear
equations in one variable, only sample a few of the
opportunities. Nothing concerning approximation
schemes has been shown here. Similarly, while the two-
tensor theory discovered herein may not be useful in
describing nature, the increase in flexibility in one’s
perspective on how Lagrangian theories may be con-
structed cannot help but be useful. Finally, the potential
benefits of a generalized Hamiltonian formalism for
nonlinear equations have not yet been realized.

1R, W. Atherton and G.M, Homsy, Stud. Appl. Math. 54, 31
(1975).
2The notation follows J.L, Anderson, Principles of Relativity
Physics (Academic, New York, 1967).
’In this section only lower case Latin indices ¢, j, k, * * * and
capital Latin indices A, B, C, ---range over the internal
group. Semicolons denote space—time covariant derivatives
while colons denote complete covariant derivatives.
4The symmetrizer (uv) stands for Jupv+ vy,
5This theory has many similarities to the two-tensor theory of
C.d. Isham, A, Salam, and J, Strathdee, Phys. Rev, D 3,
867 (1971). One difference is that in their theory, Einstein
tensors for both f and g are utilized in the Lagrangian. We
hope to attempt to discuss the physics of this theory in a later
paper.
Follows presentation in J. L, Anderson, Ref, 2, p, 92, and
the pages following,
"Ref. 1 (AH) obtains this Lagrangian in illustrating how a non-
potential operator may be transformed to a potential operator
by a change of variable,
SIn an effort to keep the formalism at a minimum, we have not
generalized our treatment to cover cases of Lagrangians
where the group representation space is also varied

[i.e., H.F. Ahner, Phys. Rev. D 13, 250 (1976)},
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Static stars: Some mathematical curiosities
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(Received 18 August 1976)

The equations of structure of static Newtonian and general relativistic stars are investigated. By using Lie
group theory, it is shown that, in each case, the condition that there should exist a simple *homologous”
family of similar solutions necessitates precisely those equations of state for the stellar matter that are
usually invoked by means of extraneous physical arguments. In the relativistic case, a diagram which
depicts these families is drawn, using the qualitative theory of differential equations. This vividly exhibits
the nature of the general soutions, and the exceptional character of the Misner-Zapolsky solution. This
diagram is contrasted with similar ones obtained by Chandrasekhar in the Newtonian case.

1. INTRODUCTION

In the conventional treatment of both Newtonian and
general relativistic stellar systems, it is customary to
examine those special cases of interest that result upon
imposing a definite equation of state. This equation of
state is obtained by appeal to purely physical arguments
that are to a considerable extent divorced from the
gravitational aspect of the problem. For example,”? by
considering the limiting case in which the constituent
particles have relativistic energies that render their
rest masses negligible, one can obtain the equation of
state of an ideal Fermi gas at zero temperature, in the
form p =§p, where p is the isotropic pressure and p is
the mass-energy density, and hence determine the struc-
ture of an ideal static neutron star.?

For Newtonian stars in equilibrium, it seems phys-
ically plausible to demand that a simple family of solu-
tions should exist, the individual members being related
to each other by transformations of the form » -7 =ar,
p—~p=bp, and M-vM:CM, where M is the total mass en-
closed within a radius 7, and a, b, and ¢ are constants.
Chandrasekhar® refers to this change of scale as a
“homologous transformation,” and he shows that for
both polytropic and isothermal gas spheres homologous
families of solutions exist. In Sec. 2, we examine the
consequences of the requirement that a homologous
family should exist, and discover that it necessilates
either a polytropic or an isothermal equation of state,
i.e., an equation of state that is usually postulated by
consideration of extraneous physical aspects of the
problem.

Because the 7 coordinate is less well-defined in gen-
eral relativity, the above scaling procedure is not nec-
essarily justified as a means of defining homologous
families of solutions. However, it seems reasonable to
require that a simple family of solutions should exist,
whose individual members are related by more general
transformations of the form » - #(), p—~p(p) and M
-M(M). In fact, the only allowable transformations do
involve a simple rescaling, as we show in Sec. 2. 1t is
deduced that in this case the equation of state is nec-
essarily of the “y-law” type, viz. p=(y - 1)p, where v
is a constant; this is the equation of state most relevant
to relativistic stellar structure.

To some extent, we could assert that in each case the

mathematics “knows” in advance the physics of the sit-
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uation. Whether or not this is significant remains a
purely speculative matter, but it is tempting to suggest
that it is a reflection of the “subliminal” role that
mathematics can play in physical systems.>®

In Sec. 3, we exhibit a qualitative diagram that de-
picts the homologous family of solutions in the relativ-
istic case. This is achieved by observing that, when p
=(y - 1)p, the equations of structure form an autono-
mous system of two ordinary differential equations, to
which the qualitative theory of ordinary differential
equations can be applied. This diagram is compared
with similar diagrams obtained for the homologous fam-
ilies of solutions in the Newtonian case, of which Chan-
drasekhar? has given an exhaustive treatment. Some
comments are made on the special features of the solu-
tion of Misner and Zapolsky.”

2. HOMOLOGOUS FAMILIES OF SOLUTIONS
A. Lie group theory and ordinary differential equations

In differential equations, Lie group theory is usually
employed to investigate systems of partial, rather than
ordinary, differential equations. The reason for this
appears to be that a generic system of partial differen-
tial equations always admits a nontrivial group, where-
as although the same is true of ordinary differential
equations, the problem of the discovery of the group is
equivalent to the problem of integrating the original
system.®

It can be shown’ that the system of ordinary differen-
tial equations

du®
T fr,u) (B=1,2,...,m)
where u=(¢',2? ...,u™), is invariant under the action
of the infinitesimal generator X = £(x, u)(9,/0x)

+1*(x, u)(8/8u"), if and only if the following equations
are satisfied:

[

_aik_'_ffallf_ fkﬁ_ fkf B‘E
a 7

ax 8’
ofk  .af*
='% 1551’ (k=1,2,...,m). (2.1)

In the particular case where X generates “quasihomo-
logous” transformations (i.e., transformations of the
form x —x(x), ' =u/(1’), where no sum is taken over 7),
this requires £ =£(x) and 7’ =n’(u), with no sum over j.
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As a result, Eq. {2.1) becomes

I ) - 2% ) =X(1n 1) (2.2)

with no sum over k. The form of the left side of this
equation places certain restrictions on the set of pos-
sible quasihomologous transformations.

B. The Newtonian static star

The structure equations for a Newtonian star in equi-
librium are

% == % P (2.3)
and

%:41172;), (2.4)
with the supplementary conditions

p=0 when p=0 (2.5a)
and

M=0 when#»=0. (2.5b)

We shall assume further that p=0. If p is independent
of 7, then from (2.3) either ¥ =0 or p=0. In the former
case it follows from (2.4) that p=0, so in either case p
=0 and both p and M are constant. With the supplemen-
tary conditions (2.5), we obtain p=p=M=0. This cor-
responds to the trivial solution where there is no star.
We shall henceforth assume that pp’#0, where a prime
(") denotes differentiation with respect to ».

In the general case we rewrite (2.3) and (2.4) in the
form

dp_ GMp ’

T (2.3%)
and

dMm .

= dmre, (2.4)

and determine the homologous transformations by ap-
plying expression (2.2) to Eqs. (2.3’) and (2.4). Thus, if

3 3 5
X=5(7')81,*’71(0)57)-“72(/”)%,
we find
dn' dt . =2¢(r) ., . d p 7°(M)
(P =) == +n(p>d—p[m(;)_,)}+ o
(2.6)
and
dn? dE, \_2£(») nY(p)
W(M)—'d—/r('}) " + P (2'7)

From the functional dependence on M in Eq. (2.6), it
follows that 7°(M)=aM, where a is a constant; By ad-
ding Egs. (2.6) and (2.7) we now see that in view of the
functional dependence on p and 7, £(¥)=bv +c for con-
stants b and ¢. Substituting into (2.6) and (2.7), we ob-
tain
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c=0,

n'(p)=(a-3b)p, (2.8)

(@- 3b)p£—) [m(b‘l,)} =-2b.

If a=3b, then from (2.8) =0 and hence a=0. Conse-
quently £=7n'=7°=0, and we obtain the trivial identity
transformation (X=0).

and

If a#3b, then we can integrate (2.8) to obtain

p=Ap*@/ ) B (a+2b,a#3b) (2.9)

and

p=Alnp+B, (a=2b+3b), (2.10)

where A and B are constants. If a+b we may rewrite
(2.9) in the form

p=Ap"V"yB, (2.11)

where the “polytropic index,” n=(a - 3b)/(a-b)#-1. To
comply with condition (2.5a) we must have B=0 and 1/n
>-1 (i.e., n>00rn<-1), If a=b, Eq. (2.9) becomes

p:Ap+B (2'12)

and again B =0 for the validity of condition (2.5a).
Equation (2.11) with B =0 is the usual form for a poly-
tropic gas, whereas (2.12) is the equation of state for an
isothermal gas.® It is clear that Eq. (2.12) can be con-
sidered as being obtained formally from (2.11) by let-
ting # tend to infinity.

In the general case where a#b, a#2b, and a+3b, or
in the special case where a =206+ 3b (i.e., n=~1), then
X is proportional to

3 9 a
(n - 1)1’@— 2np53+(n - 3)MW'

Ifa=b+3b (i.e., formally, n=e), then X is proportion-
al to
[} 2 )
’}’5’-— Zp% +A/!3]T/i .
The operator X has two independent invariants. These
are readily seen to be My =3/ "D and gy 27/ =1 iy a1

and v and M/p if n=1 (or any two independent functions
of these invariants).

In each case, the finite transformation generated by
X is a simple rescaling: v~ fv,p—gp, M ~hM, where
f, &, and k are constants.

If n is finite, we put p<8? and » < £, The homology
theorem of Chandrasekhar? states that if 8(¢) is a solu-
tion, then so also is C?/ ™ '9(C%), where C is an arbi-
trary constant. In our notation, this reduces to the ob-
servation that p'/"#2/ "1 jg invariant, or that the equa-
tions are invariant under a transformation » - Ar, p
-~ A-en/ (n-l)p, and M~ A =3/ (=Diar

If # is infinite, we put pce™ and v « £; the homology
theorem states that if ¥(£) is a solution, then so also is
P(CE) -2 InC, where C is an arbitrary constant. It re-
duces to the observation that p» 2 is invariant, or that
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the equations are invariant under a transformation »
~Av, p—~A~3p, and M~ AM.

Some aspects of the group properties discussed above
are treated by Kurth,® but from a different viewpoint.

C. The relativistic static star

The structure equations (we use geometrical units, in
which G =c =1) for a static star in general relativity are

dp _ (p+p{M+4mv°p)

dr~  rH1=2M/7) @.13)
and

dM .

=y =4me, (2.14)

with the supplementary conditions (2.5).

If p is independent of , then from (2.13) either M
+47r3p=0or p=—p. Inthe fomer case it follows from
(2.14) that p=—%p. Thus in either case the equation of
state is unrealistic. If p=0, then by (2.5) p=0 and this
corresponds to the trivial solution where there is no
star. We shall henceforth assume that pp’ #0.

In the general case, we proceed as in the Newtonian
case above. However the calculations involved are con-
siderably more complicated, and we shall omit algebra-
ic details. The expression (2.2) becomes

dn? dt
‘(‘IE(P _d—r(”
PPN 1 (M+4u7v3p) .
=805 [m;—z A-2M/) ]*’7 (P35,
(p+p)(M +4mr3p)| 8 (M +4n72p)
% [1“ () }’“” (M)W [h‘ (1-2M/7')J
(2.15)
and
dn? dg, 28 1'(p)
m(ﬂ{)—a;('r)'— P + p . (2-16)

From the functional dependence on M in (2.16), we have
n*(M)=aM +a, where @ and « are constants, This im-
plies that n'(p) =(a - 3b)p and &(r) =by +c /7, where b
and ¢ are constants. The conditions for compatibility of
these relationships with Eq. (2.15) is found to be (i) a=b
=c=a=0or (ii)a=5#3b, c=a=0. The first case cor-
responds to the identity transformation (X=0). The
second case corresponds to the transformation genera-
ted by X=7(8/8¢) ~2p(8/8p)+M(8/8M ). The quantities
M /¥ and p7? (or any two independent functions of them)
are homologous invariants. The equation of state is
necessarily p={y - 1)p, where y is constant. Because of
the close analogy between this case and that of the iso-
thermal gas considered in the Newtonian case in Sec. 2B
above, we obtain a homology theorem for the relativis-
tic case:

Howmology Theovem: For an isothermal gas in equi-
librium in general relativity, if p(r} is a solution, then
so also is C?p(C¥), where C is an arbitrary constant.

This is again equivalent to the observation that p»? is
invariant, or that the equations are invariant under a
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transformation » -~ Av, p— A p, and M~ A M.

It is interesting to note that Michalski' has dis-
covered that the most general continuous transformation
which leaves the equations of stellar structure invariant
in the nonstatic case (i.e., explicit time dependence) is
a homology transformation in which » -~ Av, p— A"?p,
and p~ A”%p, thus forcing the equation of state p
=(y - 1p.

3. QUALITATIVE DESCRIPTION OF RELATIVISTIC
STARS IN EQUILIBRIUM

In this section, we discuss the structure equations
(2.13) and (2.14) for a static star in general relativity,
in the case where a homologous family of solutions ex-
ists. As we have seen, this requires matter with an
equation of state p=(y ~ 1)p, where ¥ is constant.

It is convenient to express Egs. (2.13) and {2.14) in
terms of the homologous invariants m1= M /¥ and u
=4npr .

They become

dp  p [ (5y - 4)m ]

RS T R 2 (3.1
and

dm

T k-, (3.2)

where {=1n¥. Since we are assuming throughout that
pp’ #0, it follows that y#1 and hence that division by
(¥ =1 in (3.1) is justified.

Equations (3.1) and (3.2) form a plane autonomous
system of differential equations and one can depict the
nature of the solutions in a diagram in the m ~ u plane
(see Fig. 1; cf. Refs. 11-14). Only the physically rele-
vant region w >0, u >0 is depicted. Those solutions for
which »7>1/2 are not admissible, since they correspond
to stars lying completely inside their Schwarzschild
radii, i.e., to black holes, and condition (2.5b) cannot
be satisfied. Of those solutions for which 0<n <172,
the majority are unrealistic since they cross the u axis
at finite £. This has the interpretation that M =0 for
some finite nonzero #,; for realistic matter content, p
=0, and so equation (2.14) shows that in this case con-
dition (2.5b)} is satisfied only if p=0 for 0= =¥ which
is absurd.

There are two other solutions. One is represented in
Fig. 1 by the center of the spiral, at the point P where

p=m=2(y-1)/{(y+2)?-8]. Thus
1 ¥-~1 2(y = )y
e — g M=———
Peg Gaor-s M Mg laele

This is the special solution of Misner and Zapolsky”; it
is the relativistic analogue of a special singular solution
described by Chandrasekhar® for Newtonian polytropes
with index n satisfying 3<n=9, The other “realistic”
solution in Fig. 1 starts out at the origin (where # =0)
and spirals into the point P. It possesses the property
that p is finite and nonzero at =0, and it extends out to
infinite values of », the density decreasing approxi-
mately as 1/7 2, as in the Misner-Zapolsky solution.
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FIG. 1. Integral curves of the system (3.1) and (3.2) in the re-
gion 4> 0,m> 0. The physically relevant solutions are that of
Misner and Zapolsky (represented by the point P) and the solu-
tion which starts at the origin, 0, and spirals into P.

In each case the space~time metric is obtained from
calculating the coefficients A(#) and B(r) in

ds?= ~B(¥)dt?+ A)dr? +7v *(d6? + sin®0 dp?) .

In order to satisfy Einstein’s equations with A(0) finite,
we must have A(¥) =[1 =2m]|'=[1-2M/r]"!; the func-
tion B(v) must satisfy

B'/B=-2p"/(p+p).
Weinberg’s solution® of this, in the case where the
model is asymptotically flat [i.e., B(»)=1], is

B('r):exp/ pz—+’5d1' (3.3)

T
but this is valid only if the integral converges. This
will be the case for a realistic model, where there is a
region outside the star, but it is interesting to note that
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there are cases where (3.3) is not valid. For instance,
in the solution of Misner and Zapolsky described above,
B pta/M=D ey ld/ -1 howeyer this solution is not

asymptotically flat,
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Complete integrability conditions of the Einstein-Petrov

equations, type |
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The post-Bianchi equations, defined as the integrability conditions of the Bianchi equations, are explicitly
stated for the algebraically general (type I) Einstein-Petrov vacuum equations. A computer analysis of
these equations has shown that they constitute a completely integrable set. Hence all conditions imposed by
the Einstein equations of this type on the derivatives of the dependent variables are now known.

This paper presents the results of one phase of a
computer assisted study of the problem of obtaining the
exact solutions of the vacuum Einstein equations. At
this point, we have developed the full set of integrabili-
ty conditions for the Einstein-Petrov equations in the
algebraically general, type I, case. The result is that
the post-Bianchi equations, which are the integrability
conditions of the Bianchi identities, are themselves
completely integrable modulo the other equations.
These post-Bianchi equations are given explicitly in
Newman-Penrose notation in Eqs. (22) below.

Thus, all derivative conditions imposed by the Ein-
stein—Petrov equations are now known. Some applica-
tions of this result will be explored in another paper.
Several points may be mentioned here, however. First,
the explicit statement of all differential conditions may
be helpful in obtaining new solutions directly. At least
the nature of the arbitrary functions generating the most
general local analytic solutions can now be described
in full. In connection with this, the explicit expression
of the full integrability set provides a mechanism for a
straightforward proof of the local existence theorem
using a Cauchy-Kowalewski type of theorem.! Finally,
it should be noted that these results have invariant con-
tent, since if the Petrov scalars are functionally inde-
pendent, a unique canonical local coordinate system is
obtained, as discussed in the Appendix. Different func-
tional forms for metrics expressed in this standard co-
ordinate system thus describe physically different met-
rics.

The general approach used in this work was described
in a previous paper,? with a very early version of the
computer techniques presented in another.® The equa-
tions of interest here are essentially the structure equa-
tions, which define the connection and curvature forms,
together with the condition that the curvature compon-
ents be of the Petrov type 1. Since the Lorentz orthonor-
mal frame in which the curvature components have this
form is not integrable in general it is necessary to use
a differential geometric language adapted to such non-
holonomic bases (sometimes also referred to as “tet-
rads” or “moving frames”). The language of differen-
tial forms, developed by Cartan, is most convenient for
this purpose. The book by Misner, Thorne, and Wheel-
er? contains an extensive introduction to this formalism.

Let w® be a Lorentz-orthonormal basis (tetrad, vier-
bein) for the space of 1-forms. Thus, the metric can
be expressed
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ds® =1, gw"w?, (a,8,++-=0,1,2,3), (1)

where 7, g=diag(-1,1,1,1). Since each @ is itself a
form, it can be expressed in some local coordinate sys-
tem in terms of components, wf, ¢=0,1,2,3, which
transform as covariant vectors with respect to the co-
ordinate index 7. In general, we will use greek indices
to denote components of objects relative to a form basis
such as w®, while latin indices will describe compon-
ents relative to a coordinate basis. Thus if p is a 1-
form,

p=paw® =p;dx’, (2)
and, in particular,
W =W dxt. 3)

Differentiation relative to a coordinate will be denoted
by the usual comma notation while form derivatives are
indicated by a vertical bar. Thus, if f is a function,

af =f idx' =fow", 4)
so that
Slaw®i2f . (5)

Since the results obtained in this paper are expressed in
terms of form derivatives with respect to a basis such
as w?, or the Newman-Penrose complex null basis, it
is necessary to use Eq. (5) to translate into ordinary,
coordinate derivatives. However, these coordinates
must be chosen in some standard, canonical way in or-
der to maintain the invariance of the results. Two ap-
proaches to this problem are discussed in the Appendix.

The basic geometric equations in differential form no-
tation are the Cartan structure equations. The first of
these essentially defines the connection forms, ® g

dw*=wPAw®,, weptwpe=0. (6)

The components of the connection forms, % ,,, are
sometimes referred to as the Ricci rotation coefficients
of the frame w®. The curvature forms, Q%,, are given
by the second structure equation,

dw® g+ Aw¥g=Q%. (7
The usual Riemann curvature tensor components are
then the components of Q%,

sf'B:(%)R"‘Bu,,w“/\w”. (8)

The condition that the curvature components be of the
type I form is most easily expressed in terms of the
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complex notation for this problem introduced by Petrov
in his original paper.® Petrov set out to solve the clas-
sification problem for tensors having the algebraic
properties of a Ricci-free Riemann tensor. Such ten-
sors can be most conveniently analyzed in the SO(3,C)
representation of the Lorentz group which makes use
of the one-to-one correspondence between antisymmet-
ric two-tensors and complex three-dimensional vectors.
This correspondence can be established by associating
the “electric” and “magnetic” parts of such a tensor
with the real and imaginary parts of the complex vec-
tor. Thus, if f,, is the tensor, define

E =1 a, (9
and

Bazeabcfbc/z’ (10)

where ¢, b,++-=1,2,3, and €,, is the alternating sym-
bol. Then f,, is associated with ¢, where,

G,=E.+1B,. (11)

Lorentz transformations on f, 5 are then associated with
complex rotations on ¢, . In this notation, Ricci-free
curvature tensors become complex three by three sym-
metric traceless matrices. The Petrov problem is then
one of finding a canonical form for such a matrix. The
general type I situation is the one for which this ma-
trix has three distinct eigenvalues and can be diagonal-
ized. Of course, because of the condition of being
traceless, the sum of these eigenvalues is zero.

In order to make use of this complex notation in the
structure equations from the start, let us replace the
1-form basis, w®, by the corresponding complex 2-
form basis, ¢®, defined by

09 = WA W+ (1/2)€% WP A WC . (12)

Further, define the complexified connection forms, X?¢,
by

X0= ()% w ~ iwl, . (13)

In this notation, the Einstein-Petrov type I structure
equations become

do®= €%, X" A 0°, (14)
dX" - (3)e* ), X* AX°=@%0% (no sum on a). (15

Here a“ are the three complex Petrov scalars, whose
sum is zero. From now on, w® will represent this pre-
ferred basis.

These, then, are the equations whose integrability
structure must be investigated. Thus if two of these
equations determine different derivatives of the same
function, the differential consistency condition must be
checked. Since we are using form derivatives, rather
than ordinary commutative differentiation, such con-
ditions have the form

Heds=F181a = 100 0 s = 7" ga) =0. (168)

The integrability conditions for the set (14) and (15) can
be obtained simply by applying the exterior derivative
operator, d, and using the fact that d*=0. This then
leads to the Bianchi conditions,
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da® A0+ (a®—a)XP Ao — (¢~ aP)X A0 =0. a7

Here, and throughout the remainder of the paper, a,b,c,
=g¢yclic(l, 2, 3) and the summation convention is sus-
pended. The use of ¢,  only complicates the notation.
Using (12) these can be explicitly expanded to give

aah:(a"~ab)X°b+(a°—a“)Xbc, (18)
a’lp=i(a®=a’X’+(a’ - a®)X",, (19)
a’l =i(a’ - a®X% +(@® - a)X’,, (20)
a’|o=i(a® = a®)X®,+i(a’ — a®)X",. (1)

It is straightforward to check that these equations are
consistent with the condition 7 =0, so that there are
only eight complex independent equations among them.

The differential consistency of the set (18)~(21) must
now be checked, making use of (16). The computer was
used to generate these conditions, the post-Bianchi
equations, substituting where necessary for derivatives
previously determined from the structure equations
(14), (15), and the Bianchi equations themselves.
Twelve equations were obtained of which only nine are
independent. In full detail these equations are rather
lengthy in this notation. However, they take a simpler
form when expressed in the Newman—-Penrose formal-
ism,
3W,(27A - 2pv - 3v€E +Vp ~ VE + IABHAT - Aa +GA = Dv)

+¥ (—Te =Tp+T7€ ~30n1 ~80a +pp—pT +p&

+3uk+8ky —0p+DT1)=0, (22a)
3V, (=AX+TKk —20p = B0€ —0€ — v = VT +2Ur+ DAy +Ay

+KT—DO)+¥ (Ap+477+8Ta +7T —py —py — 77 = 4vk

+ € + pE — Bye ~8ye +BaT+Du - 8Dy) +4¥, ¥, =0,

(22b)
3W,(—0K —pK +TA — V3 +5ra — 5Ke + KE +AB ~ BX — Dk)
+¥ (17 +4pr +Tpa —pB +n€ — 1€
+pk —4xk — 8yk -~ Beq +8a€ +8p + D —8Da) =0,
(22¢)
39, (~Av ~70 ~50B —0a + Vi +5Vy — vy + AU + KX — 60)
+¥ (AT ~BAB ~4Tu—~Ty +Ty +40v —pv — 71X = Tup
+po+8yB+8ev +6u~88y)=0, (224d)

3V, (AX+3Tk —20p — 30€ +0€ — 37V — Bray + LT +2ur
+3xy — Ay + BB — kT + DO} + ¥ (~=Ap ~TT +40x — 4pp
—Tpy +py + 77 ~ pe — u€ +8yp +8Ba -~ 8 ~ 85 — D)

+4¥,¥%, =0, (22e)
3V, (AP +DU+TT =Py ~ Py — U7 + Y€ + PE )

+¥(~AX=DO +TK +20p +30€ —0€ — MV = 1T

—2uA =3ny + Ay +kW) =0, (22f)
I, (Te€+TP—TE =0T ~pR+PT ~pa + Kk +6p —DV)

+W,(2TA ~2pv — Bre —vp +veE +5A8

—AT+Aa - 8A+Dv) =0, (22g)
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3W, (70 =~ pa —pB+ 7€ ~ M€ + K +8p +Dm) +¥ (—0k
+3pKk =370 — 10 — 3ha + A + 3ke +K€-—5A—DK):O,

{22h)
3V, (AT Ty +Ty —pV ~ TA+ U+ v + B
+Wo(~Av +370 + 308 —0a — 3vu — 3uy
+AV+KX =y — 50) =0, (22i)

In order to translate from the SO(3, C) notation to New-
man~Penrose (N~P), rewrite the metric (1) in terms

of null form p#, A=1,...,4,
ds?=2p'p® + 2p°p*, (23)
where
p' = (v’ ~w")/V2, (24)
PP = (W +w) V2, (25)
p*= (W +w')/V2, (26)
pt=p7> 27

Next, define Z°, the complex connection forms adapted
to the p? basis,

Z = (X% - ix1)/2, (28)
Z2=(X2+iX1)/2, (29)
2 =iX/2. (30)

It is important to note that the components 2%, are rel-
ative to the basis p# while the X?, are relative to the
®, Thus, for example (28) implies that

w.
Zb =i(x%, -X%)/2V2. (31)

The N-P formalism uses a basis closely related to the
p*. The N-P derivative operators (D, A, 5, ) are sim-
ply form derivatives with respect to {-p*, p%, p%, p*). The

N-P spin coefficients are related to the Z°; by

Z' = w, =y, =, =), (32)
ZZA:(K9 —7;—03"9)» (33)
2= (e, —y, =B, —a)- (34)

Finally, the independent Petrov scalars, o' and o are
related to ¥ and ¥, by

¥, =(a' - a®)/2, (35)
b, = (el +a?)/2. (36)

These were used to derive Egs. (22) from the corre-
sponding SO(3, C) equations.

The next step is to determine the integrability condi-
tions generated by the post-Bianchi conditions. For ex-
ample, in the X® notation, three different derivatives of
X',are determined. The consistency of these determin-
ations with (14) and (15) must be guaranteed, etc. The
computation of these equations in detail proved to be
enormously complicated and was accomplished entirely
by computer techniques. The surprising result was
that, in spite of the intermediate complexity, when all
substilutions for previously detevmined devivatives
weve made, the integrabilily conditions of Eqs. (22)
turned oul lo be lrivial, i.e., the stvuctuve equaltions,
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plus Bianchi conditions, plus the post-Bianchi equations
(22) are a complelely integrable set. The Einstein—Pet-
rov equations impose no further restrictions on the de-

rivatives of dependent variables.

That such a simple result should emerge from such
enormously complicated intermediate stages probably
indicates that it could have been anticipated without ex-
plicit computation. However, it is not obvious how this
can be done. For example, it is true that the post-Bi-
anchi equations are themselves the integrability con-
ditions developed from a preceding set. This however,
does not imply that they should be completely integrable
since the Bianchi conditions, themselves the integrabil-
ity conditions of the structure equations, are not com-
pletely integrable. This is so because supplementary
conditions were placed on the components of the curva-
ture forms. Otherwise, of course, the Bianchi condi-
tions for an arbitrary curvature tensor are completely
integrable. It might be expected that the restriction on
the form of the curvature components would carry over
to place nontrivial integrability conditions on the post-
Bianchi equations. Nevertheless, this did not turn out
to be the case. Perhaps an understanding of this prob-
lem might provide further insight into the structure of
the type I solutions.

APPENDIX

The Einstein-Petrov differential equations discussed
in this paper have been described in terms of form, or
N-P, derivatives, rather than the usual partial deriv-
atives of field functions. However, actual solutions
must be described in terms of the functional form of the
field variables relative to some local coordinate sys-
tem. Thus, in practice, it is necessary to introduce a
coordinate system, and to define the w®; used in (5).
Here we will discuss two methods of defining such co-
ordinate systems in a canonical way so as not to disturb
the invariance of the results, showing in each case how
the w% are determined by the equations. First, if the
four real Petrov scalars are functionally independent,
they can obviously serve as coordinates. In terms of
the complex a® these coordinates, x*, i=0,1,2,3,
could be defined by

(A1)
(A2)

al =x%+ixt,

o =%+ ix,
assuming of course that the real part of o' is a time-
like function. (Recall that o®=~a' ~a®.) If not, obvious
changes could be made. Taking the exterior derivatives
of (A1) and (A2) and using (4) we find that we can obtain
all of the form derivatives, x"l s of these canonical co-
ordinates in terms of the a“‘ g- However, these latter
quantities are determined by the Bianchi conditions,
(18)—(21). Finally, the w®; can be computed as the in-
verse of x| g since

W =W dxt =™ xt gw b (A3)

On the other hand, if the Petrov functions are not fully
independent a canonical coordinate system can still be
defined in terms of the uniquely defined w®;, up to an
arbitrary choice of originas shown by the following the-
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orem,

Theorem: Given four independent forms ? defined
over a neighborhood U of a point P, there exists a
unique coordinate system, x*, defined over a neighbor-
hood V of P with VCU and x* (P) =0 and for which

o _ sa
w0‘607

0% =8%, for x°=0,

wazzﬁaz, fOI‘ XO:/\JZO,
w*,=08%;, for x"=x'=x*=0.

The proof of this theorem is given in detail in another
paper.® Intuitively, the idea is as follows. Lete, be
the tangent vector basis dual to w®. Starting from P,
the x° line is defined as the unique curve through P tan-
gent to ¢* with proper distance providing the coordinate
scale. This gives the x°=x' =x?=0 line. Next, starting
from points with so-defined x*® values along this line,
proceed out along the unique curves tangent to ¢?, with
proper distance providing the x* coordinate scale. This

1381 J. Math. Phys., Vol. 18, No. 7, July 1877

defines the x', x° coordinates over the surface x°=x'=0.
Continuing in this manner, the coordinate patch having
the required properties can be constructed.

In this case the values of w® are obtained by inte-
grating the structure equations (6) using the theorem’s
results as initial values. Thus, w®%, are fully deter-
mined, while w®, canbe found by integrating (6) with re-
spect to x°, using the factthatw® =6, at x°=0. Similar
results hold for the other components.

*Work supported in part by a grant from the Research Corpor-
ation.
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The SO(3) orbits of the spin-one mixed states, contained in each SU(3) orbit are shown 1o be
characterized by the squares (defined by means of a symmetric bilinear form) of the eigenvectors of the
density matrices. The orbits of matrices diagonalizable by a rotation in a spherical basis are deduced, and

quadrupole matrices are considered as a special case.

Recently, Bacry' has given a graphical representation
of the pure states of spin j by putting 2j points on the
sphere S%, and from it, he has deduced the stability
groups of the states. In particular he has determined
the orbits and the strata of pure states of spin one. Our
purpose is to find the orbits and the strata of the mixed
states of spin onewhich are described by a density ma-
trix belonging to the polarization domain D,.?

For this we first characterize the orbits of pure states
by the squares of the states defined by means of a sym-
metric bilinear form and we give the connection with
Bacry’s representation. Then we consider the action of
the SU(3) group on /), and we label the SU(3) orbits of
D, by the eigenvalues of the density matrices. Finally
we show that the SO(3) orbits of J,, contained in a given
SU(3) orbit of ), can be characterized by the squares of
the eigenvectors, and that, for simple (nondegenerate)
eigenvalues, the domain of these squares is a tetrahe-
dron.

As an application, we give the conditions which a den-
sity matrix must satisfy to be diagonalizable by a rota-
tion in a given spherical basis. We deduce thus, the
SO(3) orbits of such matrices and pay special attention
to the particular case of quadrupole matrices. We also
show that each SU(3) orbit of 0, contains only one SO(3)
orbit of quadrupole matrices.

1. SO(3) ORBITS OF PURE STATES

Let us consider the antiunitary operator A induced by
the time reversal operation,® on the pure spin-one
states, described by rays in the Hilbert space of dimen-
sion three, H,. Its action on the spherical basis |12)
(m=+1,0, ~1) of #, is defined by

Al = (=) -m) , (1)

and, on an arbitrary state (¢} =27, ¢™ ) by
AQ=2 o™ *A|m) =20 (1) """ [—m) . 2)

This operator A is an involution and Hermitian (A=A ™!
= AT)O Note that in a given spherical basis, it can be
expressed as the product of the complex conjugation K
times the Wigner matrix

A=KIr=TK with T=p%0,7,0). {3

The Wigner matrices D*(R) are unitary in a spherical
basis but orthogonal (i.e., real) in a Cartesian one.
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This property can be expressed in terms of the operator
A in the following way.

All the matrices D'(R) commute with A and conversely
each SU(3) matrix commuting with A is a matrix D*(R)

v UESU@3), [A,U}=04 3 RESOE), U=D'(R). (4)

The Hermitian product of H, and the antiunitary oper-
ator A allow us to define the symmetric bilinear form

Qe H, @, 9)=@,w)=(Ap,p). (5)

From the preceding property of operator A, it follows
that this form is also rotation invariant. Conversely,
each SU(3) matrix keeping this form invariant is a Wig-
ner matrix D*(R)

(Up,U¢)=(¢,4) < I RESOB), U=D'(R).

(6)

This last property, essential for the following, is only
valid in the spin-one case where the representation
D(R) has the same dimension as the element R of the
rotation group.

v U € SuU(8),

Let us define the squave of a vector of H; as the mod-
ulus of the bilinear form
square of ¢ =lp|={{A¢, @), (n
with the property

(wlo)=1=0<|(¢,9)l 1. (8)

For example, the squares of the elements of the spher-
ical basis |m) are

square of |m)=|m|, |+|=]~|=0, and |0]=1, 9)

In fact, the states are rays in H,, i.e., unit elements up
to an arbitrary phase. This arbitrariness could be
eliminated by requiring that the elements of #, describ-
ing pure states have a real, positive bilinear form
(¥,9). This additional condition fixes the arbitrary
phase.

Rotational invariance of the bilinear form and the ar-
bitrariness of the phase imply that two rays in H, are on
the same SO(3) orbit O iff they have the same square

e,y 0elol=lyl.

In other words, the squares of the rays characterize the
SO(3) orbits of rays in H,,

@& Hyy Olp)=W¢< HS:]‘Pi =jpl} .

(10)

(11
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In the spherical basis |m) of #,, we can choose as a
representative of the orbit corresponding to the square
x € [0, 1] the state | x) defined by

[x)=vT=x |+1)+Vx {0).

The stabilizers of these states are easily determined.
They are, up to an SO(3) conjugacy,

(i) x=0: SO(2)={D'(a,0,0)} with a€][0,2n],
(ii) O<x<l: Z,={1,D%x,6,,0)}
with cos8, = (1 -3x)/(1+x),

(12)

(13)
(iii) x=1: §[0@2)xZ,]}={D%(x,0,0),D'(0,r,0)}
with a0, 27] .
~0(2).

In the Bacry representation, each state is represented
by -wo points, not necessarily distinct, on the unit
sphere S? embedded in R®. If we choose the same frame
in R® as is used to define the spherical basis, then the
representative states |x) are represented by the north
pole of the sphere and the point with spherical coordin-
ates (6,,0) shown in Fig. 1. To characterize the orbits,
Bacry uses 6,, readily related to x by the above formula
{13).

The space of pure states then splits into three strata
(unions of orbits with the same stabilizer up to conjug-
acy): {SO(2)}, 1Z,}, and {O(2)} corresponding to the
three previous stabilizers. The strata {SO(2)} and
{0(2)} each consist of just one two-dimensional orbit
with x=0, 6,=0, and x=1, 6,=7. The stratum {Z,} is
a continuous set of three-dimensional orbits character-
ized by O<x<1lor 0<8,<m,

Now let us consider some properties of the bilinear
form which will be used below. First, if two vectors of
H, are orthonormal, then they satisfy the inequality

Ho, %2 (1= leh(@ =1y]) .

Actually let ¢ and ¢ be two orthonormal vectors. If
{$] = x, there exists a rotation R such that

DR =Vx |0) +VI—=x[+).
In writing D'(R)¢ under the form

(14)

w

1

FIG. 1. Bacry representation of the representative states | %)
=V1T—7% [+)+ % |0) with cosf, = (1 —3x)/(1+x).

1383 J. Math. Phys,, Vol. 18, No. 7, Juty 1877

DI(R)(,O =e-”\(y-l-> +y010> +y+‘+>): yOER,
we obtain

(@,¥)=e @ MNe* D (R)p, e * D RN)

=g MaVry VI~ xy.).

But

(¢, ¥) =(D'(R)p,D'R)p) =€ *Vx y,+VI-xy})=0,
then

[(@,9)F=(1=x) |yt +y.?= (1 - x)[1-y5+2Re(y,y.)}.
Now

e®Mo,9)= ("D R)p, e D R)Q)=y5+2y.y. ,
hence

(@, 9)1%=(1 - x)[1+Re(e® 9, )]

> (1-x)[1-[e**e,0)l],

from which follows the inequality (14). If three vectors
¢; (i=1,2,3) form an orthonormal set, the bilinear
forms satisfy

3
izl((Pi;(Pj)|2=1, Vj=l,2,3, (15)
=1
which implies
2[4, 0;)12=1+|0p)% = g;1* - lo;l?,
(2,4, k) = perm(1,2,3). (16)

Combining relations (14) and (16) we obtain four in-
equalities for the squares of the vectors of an orthonor-
mal basis

3

3
‘Elwilal, 2ol < 1+2]9;l,
=1

i=1

vi=1,2,3. 17
If we consider two orthonormal sets {v;}, {y,}, Eq. (16)
implies the equivalence

Ilpil=i¢£|, i=1:2,3
él(d’hd’j”:l(q)hwj)l Vi’j=172,39 (18)

which allows us to show that, if the squares of the ele-
ments of two orthogonal bases are respectively equal,
these bases are related by a rotation, up to multiplica-
tions by phase factors. Thus

|Lpil=|(p{|: i=1}273

< 3 RESOE): ¥;=¢'“D'R)g;, i=1,2,3, (19)

where the phases «; are defined by (;, ¥;)
= explia; + ay)] (@5, 9;).

2. SU(3) ORBITS OF MIXED STATES

Mixed states are described by 3X3 density matrices
belonging to the polarization domain 0, of the 3X 3 Her-
mitian, positive, and unit trace matrices. The density
matrices can be diagonalized by an SU(3) transforma-~
tion. The SU(3) orbits of J, only depend on the eigen~
values of the matrices and can be parametrized by two
eigenvalues A, and A, such that

0SA €Ay A +2),s1, (20)
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The corresponding domain is the triangle [NPF] repre-~
sented in Fig. 2. These orbits can be gathered into
three strata corresponding to different multiplicities of
the eigenvalues®:

(i) A triple eigenvalue A=%

The nonpolarized state p,=4% I is the fixed point with
the entire SU(3) group as its stabilizer. In itself it
forms an orbit and a stratum.

(ii) A double eigenvalue

This stratum with stabilizer S[U(2)X U(1)] =~ U(2) is the
union of two disjoint continuous subsets defined by

0.«3)\1:)\2(; and -%()\l:———-—L & - (21)

represented by the segments (NP| and (NF] respectively
in Fig. 2. All the orbits of this stratum have dimension
four and are in a 1-1 correspondence with the space of
pure states. Note also that each subset contains an ex-
ceptional orbit (i.e., an orbit the elements of which have

rank less than three) corresponding to the points P and
F in Fig. 2,

P, =2,=0, A,=1,
orbit of the pure states (rank=1),

F: A,=0, A,=A,=},

orbit of rank-2 matrices belonging to the boundary of 0,.

(iii) Three single eigenvalues

The stabilizer U(1)* U(1) of this stratum is given by
the Cartan algebra of SU(3). In Fig. 2 this stratum is
represented by the triangle [NPF] without the sides NP
and NFF. Each orbit has dimension six. This two-di-
mensional stratum contains a one-dimensional subset of
exceptional orbits of rank-two matrices belonging to the
boundary of 0, and represented by the open segment
(PF) in Fig. 2.

3. SO(3) ORBITS OF MIXED STATES

Since the rotation group SO(3) is a subgroup of SU(3),
the SO(3) orbits are contained in the SU(3) ones. We
consider a given SU(3) orbit and we wish to determine
the SO(3) orbits contained in it and their stabilizers.
All the matrices in an SU(3) orbit have the same eigen-

Az

172

7N S Y

l
t
|
|
!
t
!
I
/

P A

173

FIG. 2. SU(3) orbits and strata of the polarization domain J;.
Each orbit is a point (A;,},) belonging to the triangle (NPF) de-
fined by 0= A=A, and Ay + 2Ay= 1. The three strata are

{N}, W PJU(NF], and AINFPI\[NPIU[NF].
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values characterizing this orbit. The contained SO(3)
orbits hence only depend on the eigenvectors and more
specifically on their squares.

Let us study the different types of orbits belonging to
the three SU(3) strata of 0, defined in the previous sec-
tion:

(1) A triple eigenvalue

The nonpolarized state is obviously also the fixed point
for the rotation group. It is in itself an orbit and a stra-
tum with stabilizer SO(3).

(ii) A double eigenvalue
In this case, the density matrix can be expressed as

p=xg L+ Ay — A s <s], (22)

where A, and A, are respectively the double and the
simple eigenvalues, and |s) the eigenvector associated
with A, is the only unknown. We are thus in the sa:.«
situation as for pure states, we can characterize the
SO(3) orbits by the square |s| of {s), and the stabilizer
of p is the stabilizer of |s).

Thus SU(3) stratum can thus be split into SO(3) orbits
of dimension two or three, characterized by the simple
eigenvalue A, and the square |s| of the associated eigen-
vector,

O0=2a,<3 (,=2) or $<A,<1(A,=2,) and O=|s|[=1.
(23)

The stabilizer of each pure state |s) has already been
given in Sec. 1.

(iii) Three simple eigenvalues

In this maost general case the eigenvalues are labeled
unambiguously by A, <A, <, and each density matrix can
be written as

3 3
p=21 Nl )il with 2T A =1, (24)
i=1 i}

where the eigenvectors form a complete orthonormal
set.

Making use of the uniqueness (up to arbitrary phases)
of expansion (24) and property (19) of orthonormal sets,
one easily shows that two matrices with the same eigen-
values (which must be simple) are on the same SO(3)
oribt iff the associated eigenvectors have the same
squares, respectively. The four inequalities (17) hold
for the orthonormal sel of eigenvectors. In the three-
dimensional space |w;|, ¢=1,2,3, they define a regular
tetrahedron with vertices v,(1,0,0), V,(0,1,0),
¥,(0,0,1), and V(1, 1, 1) plotted in Fig. 3.

Hence any SU(3) orbit of [}, characterized by three
simple eigenvalues splits into a three-dimensional set
of SO(3) orbits represented by this tetrahedron. The
stabilizer of a matrix is the intersection of the stabili-
zers of these eigenvectors but in fact, because of the
completeness of the eigenvectors, it is sufficient to take
the intersection of only two of them. For the different
points of the tetrahedron, the stabilizers are [(Z, ], 4)
=perm (1,2, 3)}:

(i) S[O@2) X2, |~ 0(2) for |¢,|=|¢,l=lp,l=1 (vertex
V in Fig. 3),
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FIG. 3. SO(3) orbits of ), included in a SU(3) orbit with given
A <Ay<As. Each orbit is a point ( (P1| s l(pzl |¢3|) in the tetra-
hedron (VV,V,V,) defined by 233 |@; 21, Z)SMI gl <1+2l0],

j=1,2,3. The vertices V;V,V; correspond to matrices diagonal-

izable by rotation and the vertex V to quadrupole matrices.

(ii) SO(2) for |¢;l =1, l¢,|=lg.l =0 (vertices V; in Fig.
3)) i: 13 2, 3!

(iii) Z, for {¢;1 =1, 0<|g,|=|psl <1 (open segments
VV, in Fig. 3), i=1,2,3,

(lV) I for E;I(Pl. = 19 E,M).' < 1+2|‘10j‘; .j= 1: 2’ 3
(the tetrahedron without the segments VV,; in Fig. 3).

The polarization domain ), can thus be split into five
strata according to the different stabilizers. These
strata are listed in Table I. For each stratum, we give
the dimension of the orbits, the subsets of the stratum
and their dimension.

This characterization of the SO(3) orbits of 0, gives
us a simple answer to the following question: Which are
the density matrices diagonalizable by a rotation in a

spherical basis? Such matrices belong to the same or-
bit as a diagonal matrix (in a given spherical basis).
The orthonormal set of eigenvectors must satisfy

l(pll:ly I‘Vj|=l<l’k|=0, (i:j)k):perm (1)273)* (25)

If the three eigenvalues are different, condition (ii)de-
fines three two-dimensional sets of orbits represented
by the triangle (NPF) without NP, NF in Fig. 2 and the
vertices V,V,, V, of the tetrahedron in Fig. 3. When
one eigenvalue is double, the matrix is diagonalizable
iff the square of the eigenvector associated to the simple
eigenvalue is either 0 or 1 (of course, p, is diagonal
in any basis).

Note that the action of the rotation group on /), is not
irreducible. The tensor product D*(R)}® D*(R) can be
reduced to the sum D°(R) + D*(R) + D*(R). Correspond-
ingly, the domain J, splits into subspaces globally in-
variant under rotations and each matrix of D, is a sum
of elements of these subspaces:

D,={p.t® D,(V & 0,2),
P=Py+P,+Py, Pl O(L), L=1,2.

(26)

Using the antiunitary operator, we define a new matrix
p having the following property:

P=APA=TP*I=p =P, +p,. (27)

A particular case, very important for practical applica-
tions,® occurswhen p, =0, i.e., p=p. The corresponding
matrices are quadrupole ones. We can ask which are the
orbits of quadrupole matrices (besides p,). The condi-
tion p=p implies

(i) l@ | =lp,l=lesl=1 if A <x,<x, (vertex V in Fig. 3),

(ii) lsi=1 if A, is simple and A, double.

Two eigenvalues are then sufficient to characterize the

TABLE 1. SO(3) strata of the polarization domain Z;, the orbits characterized by the eigen-
values A; of the matrices and the squares |g;| of the associated eigenvectors.

Dim. of Subsets of the strata Dim. of
Stabilizers orbits (i,j,k)=perm(1,2,3) subsets
SO(3) 0 Py=r=ny =3} 0
0(2) 2 <ng=ng, Loyl =1} 1
Pi=no<ng, logl=1} 1
{7\1<>"z<>\3, |‘P1|:!‘Pz|=‘¢3|’—“1} 2
SO(2) 2 A <Ap=2g, Loy =0} i
A=2<ng, l@sl=0} 1
Py<n<ng, logl =1, lojl=loy =0, i=1,2,3} 2
¥ 3 Pi<xg=23, 0<]g i <1} 2
Py =<2y, 0<]gy| <1} 2
P<ng<ng, Tl =1, 0<lg;l=lgl <1, i=1,2,3} 3
) 3 3
I 3 {7\1<>\2<>\3,4?|<p,.|>1,;{|¢i|<1+2|<p,-l,j=1,2,3} 5
1= 1=
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50(3) orbits of the quadrupole matrices of /,. This
means that each SU(3) orbit of 0, contains one and only
one SO(3) orbit of quadrupole matrices. Doncel, Michel,
and Minnaert® have already characterized the quadrupole
orbits for arbitrary spins by means of two invariants
which are functions of the eigenvalues.

The matrix p allows us to build rotational invariants
which can be used to characterize the SO(3) orbits of
D,. Similarly, instead of the eigenvalues, the degree of
polarization and the determinant of the density matrices
can be used to specify the SU(3) orbits, of J,. These
guantities and their relations to the eigenvalues and the
squares of the eigenvectors are given in the Appendix.

Fano in Ref. 7 characterizes the states of a spin one-
particle in a weak external electromagnetic field. This
problem is actually equivalent to characterize the orbits
of the rotation group. Fano chooses a frame in which

(Jydy+d;d,) =0, i#j.

The density matrix here takes the form
3
P=5I+327 (J;)J; +3(Q,) Q= 2(Q,) @,
=1

where ,=3J2-2, @,=J%~J5 The five parameters
which label the orbits are given by the three components
of (J), (@,), and (Q,). Itis to be noticed that this la-
beling is not invariant by rotation. Moreover the range
of these five parameters is of a rather complicated na~
ture.

In conclusion, this method of characterizing the SO(3)
orbits contained in the orbits of the special unitary group
could be generalized for higher spin density matrices,
but unfortunately contrary to the spin-one case, we do
not have a simple parametrization of the orbits of pure
states for arbitrary spins.
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APPENDIX

To characterize the SU(3) orbits of J,, instead of two
eigenvalues, we can use, the degree of polarization and
the determinant up to a numerical factor. They are re-
lated to the eigenvalues by

d=[3(3trp? = 1)]Y2=[1 = 3(A,+ Ay = A A, —AZ - 2D V2,

(A1)
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A=2Tdetp=2TA A, (1 - X, =1,). (A2)

Then each orbit is a point {d,A) in the domain defined
by the inequalities

O0sd=<1l, A20, A_sAsA,, (A3)
with
A:=1-3d%+24°%. (A4)

The matrix p associated to p, see Eq. (A2), can be
written as

P=iE)l;lQ05><<le; saz'E/\ilAGPiMAQP{I, (A5)

and because of the commutation rule (4) the quantities

trP"ﬁ"‘=‘ZE A" A" @, 0 )I? (A86)
are rotational invariants [but not invariants under the
action of SU(3)]. By using Eq. (20), they can be ex-
pressed as quadratic functions of the squares of the
eigenvectors. To characterize the SO(3) orbits we can
choose in addition to the two SU(3) invariants the three
independent quantities trpd, trp®p, tre®s®. However these
quantities are quadratic on the squares and the bounds
(21) cannot be easily applied to them.

*Work supported by the Echanges France-Québec and by the
Ministére de 1’Education du Gouvernement du Québec.

+Permanent address: Laboratoire de Physique Théorique
Université de Bordeaux I, Chemin du Solarium 33170 Gradi-
ghan, France.

{4, Bacry, J. Math Phys. 15, 1686 (1974).

?p. Minnaert, Phys. Rev. Lett. 18, 672 (1966) (for spin one)
and in Particle Physics, Les Houches 1971, edited by
C. DeWitt and C. Itsykson {(Gordon and Breach, New York,
1972).

3E. P. Wigner, in Group Theovetical Concepts and Methods in
Elementary Pavticle Physics, Istanbul 1964, edited by
F. Giirsey (Gordon and Breach, New York, 1964).

L. Michel and L. Radicati have studied the orbits and strata of
SU(3) in the octet (which is an equivalent problem} in Ann.
Inst. Henri Poincaré XVII, 185 (1973).

5. G. Doncel, L. Michel, and P. Minnaert, “Matrices Densité
de Polarisation, ” lectures at the Summer School of Gif~sur-
Yvette, 1970, edited by R. Salmeron (Laboratoire de 1’Ecole
Polytechnique, Paris, 1970).

éM. G. Doncel, L. Michel, and P. Minnaert, Nucl. Phys. B 38,
477 (1972).

'U. Fano, in Spectroscopy and Group Theovetical Methods in
Physics (North-Holland, Amsterdam, 1968).

M. Daumens and M. Perroud 1386



Generating functions for the eigenvalues of the Casimir
operators of the orthogonal and symplectic groups

C. O. Nwachuku

Department of Mathematics, University of Benin, Benin City, Nigeria

M. A. Rashid*

Department of Physics, University of Ibadan, Ibadan, Nigeria
(Received 28 July 1976)

By constructing the appropriate generating functions, the eigenvalues of the Casimir operators for the
orthogonal and the symplectic groups are expressed in terms of power sums which are formally the same
for the O(2n), Sp(2n), O(2n+1) groups as for the U(n) groups. The results for the O(2n), Sp(2n), and
the O(2n+1) groups are written as the corresponding results for the U(n) groups plus very simple
correction terms. This approach unifies the treatment of the problem for the semisimple Lie groups.
Explicit evaluation of the eigenvalues of the Casimir operators becomes very simple.

1. INTRODUCTION

The computation of the eigenvalues of the Casimir
operators (the invariant operators) of the semisimple
Lie groups has received considerable attention in the
literature. 18 In a recent paper? (hereafter referred to
as I), the authors, by diagonalizing directly the matrices
introduced by Perelomov and Popov, obtained the eigen-
values C, of the Casimir operators of order p of the
orthogonal and the symplectic groups in a closed and
simple form which is convenient for studying their
structures [Eq. (2.1) below]. In particular, this form
manifests the agsymptotic behavior of the C, for large p.
However, its main shortcoming is that each term in the
sum is a fractional function of the variable A; whereas
the quantity C,, as a whole, is indeed a polynomial.
Clearly, there must be cancellations. Also since each
term contains products of 2n[(2n + 1)] factors for the
cases of O(2n) and Sp(2n) [O(2x +1)], the calculations
using Eq. (2. 1) become tedious except for very small
values of n.

In what follows, we derive the appropriate generating
functions G(z) for the orthogonal and the symplectic
groups analogous to the ones of Perelomov and Popov
for the unitary groups. Then we are able to express
the eigenvalues C, for the orthogonal and the symplectic
groups as a finite series of power sums, which are
formally the same for the U(n), O(2n), Sp(2n), and the
O(2n +1) groups. Our answers are extremely simple,
and manifest the correction effects obtained for the
O(2n), Sp(2n), and O(2n+1) groups from the corre-
sponding results for the U(n) groups [Egs. (4.9) and
(4.15)]. Also it turns out that the answers for the
O(2n + 1) groups are formally obtainable from those for
the O(2x) groups by simply replacing n by #n+ 3. Our
work, which follows closely the work of Ref. 3 for the
unitary groups, thus unifies the treatment of this prob-
lem for the semisimple Lie groups.

This paper is arranged as follows: Section 2 contains
an outline of our notations together with some of the re-
sults derived in I which are relevant for our present
discussion. In Sec. 3, the generating functions G(z) for
the eigenvalues of the Casimir operators are derived
for the orthogonal and the symplectic groups. The
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G(z)’s as well as the C,’s are then expressed in terms
of the power sums S, in Sec. 4 which contains the key
results of this paper. Section 5 deals with the more
explicit evaluation of these eigenvalues for particular
values of p and for special types of representations.

2. NOTATION

We restrict our considerations to fensor representa-
tions only. The irreducible (tensor) representations of
the orthogonal and the symplectic groups may be char-
acterized® by n integers f, fu.1, -« - » f1 ordered such that

fnzfn-la"”;fﬁ

These n integers are the eigenvalues of the »n diagonal
generators of these groups in the highest state of the
representation. In the following we require f; (—n<i<n)
where the f_; are related to f; by

fa=—fi

[Consistently this implies that f,=0 for the case of the
O(2n +1) groups. |

The eigenvalue C,(fy,f;, . . ,f,) of the Casimir operator
of order p corresponding to this representation charac-
terized by f,, fuo1s - - - , f1 has been shown [Eq. (3.6) in I]
to be

)‘-i_xi
240 =1,

— (A= A+ = X) = (A= Ay)

X T - § -

B aeen fleo ey
#0, 31

where the terms in { } apply to the O(2r), Sp(2x), and
O(2n +1) respectively, and the summation as well as
the products in the denominators include zero only for
the case of the O(2n +1). In the above equations [as is
displayed in Eq. (2.14) in I}

for the O(2n):

M=fitnti-(1+¢) (2.2)
and

Ay==-N+2n-2, (2.3)
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for the Sp(2n):

AN =fi+tn+i (2.4)
and

Ay =—2A+2n, (2.5)
for the O(2rn +1):

A =fi+nt+i-8y, (2.6)

Ay==M+2n-1 (120), 2.7)
and

Ag=n (2.8)
where

g=1,-1,0for >0, {<0, and {=0,
respectively, and
0,,=1(0) for j<i (j=4).

We may also introduce!’
by

the power sums S, defined

= i (Af - (2.9)

==n
where

Pi=N—fi=n+i-(l+e)ntinti-0y, (2.10)

for O{2n), Sp(2x), and O{2n + 1} groups, respectively.
Evidently

Sy=5;=0. (2.11)

Using Egs. (2.3), (2.5), and (2. 8), we can re-

write Eq. (2.1) in the form

(2.7,

N-n+1
Ai-n+ i
~ Sl =1 n ( 1 >
c,_i:E_nA, g 1—)\‘_% , (2.12)
#
hi—n—%
M—n—l

where again the summation and the products include
zero only for the O(2r +1) groups.

3. THE GENERATING FUNCTIONS

(a) The case of the O(2n) and the Sp(2n) groups: We
now transform Eq. (2.12) into a “contour integral” in
the A plane, ! obtaining

A~ nil n 1
1 ~___ ;2 -
¢ f o 3T B (- 12s)

1
shusip 1 (1——,;;1%),
2 1

i==nn

3.1)

where the upper (lower) sign applies to the O(2x) [Sp(2n)]
case. This convention is to be understood throughout.
The path of the integration may be taken (in a positive
sense) along any large circle with the origin as center
and containing all the poles of the integrand in A, Note
that the additional term in Eq. (3. 1) above takes into
account the pole at A=»7F 3 present in the integrand
which has no counterpart term in the expression in

Eq. (2.12).
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Using Egs. (2.3) and (2.5),

n 1
A (“m)*

so that, making the change of variable A=1/z, Eq. (3.1)
becomes

it is easy to show that

1 z ,
=" f(zz!’)'d2 272, (3.2)
where
= 1._(@;1)2 n z
f(Z) ~(n= %)Z ;'E,, (1 1= }\l.z) . (3.3)

In Eq. (3.2), the integration is taken (in the positive
sense) along any closed path containing the origin but
excluding all the poles in the function f(z).

From Eq. (3.2), it is clear that the quantity + 3(n - 3)°
- C, is the coefficient of 21 in the Taylor series expan-
sion of £(z) about the origin, i.e.,

e =1= 23 (C,7 bln 4P) 7%, (3.4)
In terms of the generating function G(z) defined by

G(z)= pi c, 2, (3.5)
Eq. (3.4) can be rewritten as!?

26l2) =1 -fla) } 53 (ne 3P 2, (3.6)

where f(z) is given in Eg. (3.3).

(b) The case of the O(2n+1) groups: The “contour
integral representation” for the C, in this case is'!

1 N—n—% n 1
- = p T2 —
Cp= 27 f arx A-n-1 iEn (1 )\—)\i)

(3.7

We remark that in the derivation of the above equa-
tion, the following points were especially noted:

(i) The factor in the product in the integrand corre-
sponding to ¢ =0 eliminates the apparent pole at A=n+1.

(ii) The term corresponding to =0 in the summation
in Eq. (2.11) is not correctly reproduced by the residue
at the pole at A=X;=n in Eq. (3.7). The additional term
in this equation is to make up for this deficiency.

As in case (a) above, using Eq. (2.7), it can be easily
shown that

n 1
1- =) =
ii—[-n ( n—-hi) 1’

#0
so that on changing the variable of integration to z =1/,
Eq. (3.7) becomes

1 f(z)dz

. in?®,
Cp= ~ 9 27 + 3 (3.8)
where
1-n+3)z * z
= - 3.
&)= T e i (1 1-)\;3) 3.9)
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in terms of which, the generating function for the
O(2n +1) groups takes the form*?

26(2) =1 _f(z)+§§n’z’+*. (3.10)

4. EXPRESSION OF THE GENERATING FUNCTIONS
AND THE EIGENVALUES OF THE CASIMIR
OPERATORS IN TERMS OF THE POWER SUMS

(a) The case of the O(2n) and the Sp(2n) groups:
Equation (3. 3) leads to

Inf(z)=— é} %k[(rH: 12— (¥ 3)F + ._Z}n((hi%—l)k A,
(4.1)

Next we try to express $7. [(A; +1)* = x¥] in terms of
power sums which were defined in Eq. (2.9). Indeed

5 Or1r-w=5 o [ oi-et 5 01]

i=en 1=0

- Z.:i(k,)S, + 2 (o + 1 - )
1=0 izan

k-1

= 120 (k) S, + @nF 1)t +2% ~ (1% (4.2)

In the last step above, Eq. (2.10) has been used.

The above two equations lead to

- k-t
Inf(z)=— 21 -ZE @nF 1 +n* - (nF L) + lzg (k))S, (4.3)
or
[1-@2n¥1)z)(1 - n2)
flz)=-~ S STV exp[- ¢(z)] (4.4)
where, since S,=8,=0 [Eq. (2.11)],
- 1
¢ ()= g akzky ak— kE (&) S (4.5}

Combining Eqs. (3.6) and (4. 4) results in

G{z) = m -~ z-{1-Cn71)2])(1 - n2)
x exp(- ¢(2)}.
(4.6)

Further simplication is achieved by introducing the
quantities B, defined by*

expl- ¢(z)]=1- pzz) B,z**! (or By=B,=0) 4.7
in terms of which
© w -1
G(z):2n+§( -n B,z ,?m
X(B,-nB,)nF 3Pz*, (4.8)
Comparing Eq. (4. 8) with the definition of G(z) in
Eq. (3.5), we finally obtain
p-1
C,=2nb,)+ (B, ~nB,) - g; (B,-nB, )n* . (4.9)

(b) The case of the O(2n + 1) groups: For this case,
Eq. (2.10) gives
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-1
X, +1}*-x’;]=k2}0 (B} S, + 2} +n+ 1) -n* (4.10)
i=

sent
which when substituted into 1nf{z) computed from
Eq. (3.9) results in

1nf(z) i} Z—,: (@n) + (n+ 5t ~n* + ,fZ% (k) S,]
(4.11)
or
Fe)= (1-2n2)[1-(n+3)z] expl- 6(2), (4.12)

1-nz

where ¢{z) is formally the same as in Eq. (4.5) for
case (a). Combining the above equation with Eq. (3.10)
results in

1 .
= i) (1~ -2

— (1 =2n2)[1=(n+ 1)zl expl- o (2)}. (4.13)
(4.7), we have

G(2)

In terms of the B, defined in Eq.

Glz) = @n +1) + ii (B, - (n+4)B,, ]2

’i::[ =+ 2) By, (4.14)
Finally
Cy=@n+1)8,,+B,~ln+3) B,
- :Zé [B,—(n+%) B,yln*e. (4.15)

A short discussion of our main results contained in
Eqs. (4.8), (4.9), (4.14), and (4.15) is in order.

(i) Noting that the eigenvalues of the Casimir opera-
tors of the U(n) groups can be written in the form
{Eq. (17) of Ref. 3]

C,=nd,;+B,-nB,,, (4.16)

we see that our Egs. (4.9) and (4. 15) manifest the cor-
rection effects for the O(2Zn), Sp(2r), and the O(2xn +1)
groups over the corresponding results for the U(n)
groups.

(ii) The results for the O{2xz + 1) groups are formally
the same as for the O(2n) groups with the replacement
n~—~n+ 3. This results in a synthesis of the two types
of results. This synthesis is fully exploited in Section
5, where detailed evaluation of the C,’s for the special
cases is given.

(iii) Equations (4.9) and (4.15) are extremely simple
in form and easy to handle. To compute C,, all we need
are the B,’s for 1 <g <p in terms of the power sums S,

5. SPECIAL CASES

In this section, we work out the complete answers
for some particular values of p and in some special
cases for the O(2n) and the Sp(2n) groups. The corre-
sponding answers for the O(2n + 1) groups are automa-
tically obtained using ansatz (ii) in Sec. 4.
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Eq. (4.5) gives
$(2) =S,2° + (S5 + $S,)2t + (S, + 28, + 25,)2°
+(S5 +38, + 48, +35,)2° + (S + 355 +5S,
+58;4+388,) 27+ -+, (5.1)

Computing exp[— ¢(z)] and using the definition of
B, in Eq. (4.7) we find

By=B; =0,

B,=S5,,

By=5;+3S,,

B, =S, +25;+2S,;,

By =S;+3S, + 415, +35, - 35,

(5.2)

Bg=S; +3S; + 55, +55; + 35, - 35} - S,S;,

Using By=B; =0, Eq. (4.9) can be rewritten in a some-
what more convenient form (from the point of view of

actual computation) as
=3
C,=2nb,,+B,-(2nF5) B, 1% Z% (n¥ 3B,y (5.3)
q=

from which we obtain

C(): Zn,
C‘l:O’
C2=8By,

C3=B;-(2n¥3)B,,
Cy=B;~ (2n¥3) By+ 5(n¥ }) By,
Cs=B; - (2n¥3) B+ 5(n¥ 3) By £ 5(n¥ 3)°B,,

Co=Bg~(2n¥ 3) By+ 5(n¥ 3) Byx 5(n¥ 3)'By+ :(n¥ 1)°B,,

(5.4)
For the O(2n + 1) groups, to compute the correspond-
ing C,’s, just replace n by n+ + and use the upper sign
for O(2n).

(a) The completely symmelric vepresentation: For
the completely symmetric representation ( f,0,0,¢**)
for which f,=~f,=f, fi=~fu=0 (1<isn-1), we
have:

for the ¢(2n):

Sy=2f(F+2n—2),
S3 = 3(" - 1)82,

5.
Sy=[f +20n-1)f +8(n— 1715, (6.5)
S;=5(n—1)S, - 20(n - 1)’S,,
and
Cy=5,,
Cy=(n-1)C
3= =1)C:, (5.6)

C, =l +2m-1)f+2( -1 - (n-1)]Cy,
Cy=(3n~2)Cy - (n+1)%(2n - 1)C, — 3C3,

e e ecses st e st ss s s s st
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for the Sp(2n):
S, =2f(f + 2n},
SS = 3"‘923

(5.7
Sy = (f% +2nf + 8n%)S,,
S; = 5nS, - 2013S,,
and
c2 :S2’
Cy=(n+1)Cy,
(5.8)

Co=(fr+2nf+20* +n+1)C,,
C;=(3n+2)Cy— -~ 1)*(2n+1) C, - 5CE.

We note that the Casimir operators of odd order p are
not independent and can be expressed in terms of those
of even order 2g with 2¢ < p. Thus the results we get for
C; and C; in Eqs. (5.4) and (5.7) (also for S; and Sg)
hold for any representation, and will not be repeated

in the cases considered below.

(b) The block vepresentalion: Here we consider the
block representation (f, f,..., f,0,0,...,0) with f boxes
in the first & rows, defined by

fa=faa=""" = nent =/,
Joe=Foorg=""11=0,
for the O(2n):
S, =2fk(f+2n—k-1),
Sy =2R{(f = RIfE—fl+ 1 +12n% - 181+ T)
+@2n-D[2(F - kP +FE+ 2(n-1)(4n - 3)]},

......................................

(5.9)

C,=5;
Co=2k{(f =R fE=fR+F)+ (2n-1)
X[kf+(f=R)(3n-2+2f~2k) +2(n- 1)(n+2)]},

20 2 e w0 et eeedu ey

.............................

for the Sp(2n):
Sy =2fR(f+2n~k+1),
Sy = 2fR{(f - R)(f? =l + 1F + 120"
+6n+1)+ @2+ DIk +2(F - k) + 2n(dn +1)]},

...........................................

and
C, =5,
Co=27k{(f - RY(FE = fR+E) + (2n+ 1)
X [kf + (f = R)(3n +2 +2f = 2k) + (0 + 1)(2n + DI}

............................................

(c) The completely antisymmetric vepresentation:
The results for the completely antisymmetric repre-

C.0. Nwachuku and M.A. Rashid 1390



1,0,0,...,0) with one box Perelomov and Popov, and Yeh and Wong,7 for those

sentation {1¥ =(1,1,...,
particular cases treated here which were considered by

in the first 2 rows are deduced from Egs. (5.10) and
(5. 12) by setting f=1: them.
for the O(2n):

C,=8,=2k(2n-F),
*On leave of absence from the Department of Mathematics,

C,=2k{(1-R)A~k+E
4 #l N ) Quaid-e-Azam University, Islamabad (Pakistan).
+@n-1k+1-R(Br-2k)+2(n~-1 (n+2)]}, 1A. M. Perelomov and V.S. Popov, Sov. J. Nucl. Phys. 3,
................ ST ST 576 (1966).
2A.M. Perelomov and V.S. Popov, Sov. J. Nucl. Phys. 3,
(5.13) 819 (1966).
3A. M. Perelomov and V.S. Popov, Sov. J. Nucl. Phys. 5,
for the Sp(2n): 489 (1967).
4J.D. Louck, Am. J. Phys. 38, 3 (1970).
C; =5, =2k(2n+2- k), 57.D. Louck and L. C, Biedenharn, J. Math. Phys. 11, 2368
— - BBl (1970)
Co=2k{1-R)(1 -+ +2n+1) 8. Okubo, J. Math. Phys. 16, 528 (1975).
x{k+(1- k)(3n +4-2B)+(n+1)(2n + 1)]} 7l(VI.X. F. Wong and H.Y. Yeh, J. Math. Phys. 16, 1239
1975).
trerrrereree corteTrrenenerenns terets 80ur list of references is not exhaustive. A better list ap-
(5.14) pears in Ref. 7 and the Introduction in this reference con-

tains information on the contents of these references.
%C,0. Nwachuku and M.A. Rashid, J. Math. Phys. 17, 1611

1976),
We note that the representations {1 for £=1,2,...,%2  toixote that our Sy is formally the same as that defined for the
are the simplest representations the products of which U(n) in Eq. (7) of Ref. 3 and is different from that defined in

Eq. (19) of Ref. 2 in which the »; obeys a reflection symme-
try 7, =—v_; whereas our p, does not,
"The inverted commas on the contour integral signify the
. presence of an additional term in Eqs. (3.1) and (3. 7).
In all cases, the results for the O(2xn + 1) are obtained 12We could have replaced the last term in Eq. (3.6) by bz/
from the corresponding results for the O(2x) by replac- [1 ~ (1;1/2)2] but it is not necessary. A similar remark ap-

ing » by n+ 4. Our answers agree with those of plies to Eq. (3.10).

on reduction will give all the irreducible tensor repre-
sentations of the orthogonal and the symplectic groups.
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Hydrostatic density distribution of fluids in steep field

gradients and near critical points
D. J. Gates

C.S.1L.R.O. Division of Mathematics and Statistics, Canberra. A.C. T.. Australia

(Received 20 September 1976)

A new perturbation expansion for the hydrostatic density distribution of a fluid in a steep field gradient is
presented. It is a power series in the scale v of an external potential y(yx). and is asymptotically valid as

¥ =0, although convergence is not proved. Significant corrections to the conventional hydrostatic equations
are found near the critical point of a fluid, even in the gravitational tield.

1. INTRODUCTION

The hydrostatic equilibrium of a fluid is described
by the equation
139

=5 (t.1)

p (ﬁ) == ga;, ¥y
where #n(y) is the number density at a point y, ®(y) is
an external potential, and p(p) is the pressure of a
uniform fluid of density p. The equation is derived
from a macroscopic model of the fluid and does not
describe small scale density variations near surfaces.
It, in effect, assumes that the change in potential en-
ergy is small over distances of the order of a molecu-
lar diameter, We counsider here the response of fluids
to steeper field gradients and the resulting corrections
to {1, 1), Por a fluid close to its gas—1liquid critical
point, we find that these corrections are significant
even in the gravitational field,

For states well away from the critical point, the
corrections are significant only for very steep field
gradients such as those imposed by container walls or
by a porous mediumn saturated with the fluid,

If the system is subject to an external field ¥(yx) and
we define

n(y) =1mn(y/v, o)), (1.2)

where (X, ?) is the exact number density for a system
of interacting molecules in this field, and () denotes a
suitable space average on the molecular scale, then one
can prove that (1, 1) holds exactly. L2 The limit implies
a vanishing field gradient on the molecular scale, We
examine the case where the field gradient is small but
nonvanishing on this scale by expanding n(y/ v, ¥ as a
power series in v,

In Secs. 2 and 3 we derive a prescription for the gen-
eral coefficient of this expansion, In Secs. 4 and 5 the
deviations from (1,1) are estimated,

A different approach was adopted by Lebowitz and
Percus?® (see also Ref. 4). Their method is based on a
functional Taylor expansion of the chemical potential
in terms of density gradients. They obtain only the first
term of this expansion and do not give a prescription
for obtaining further correction terms, Our method is
more systematic and is known to be at least asymptoti-
cally correct® in the limit y = 0.

2. EXPANSION IN TENSOR FORM

The modified Ursell correlation functions
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#(Xq,...,%, 1) of a continuous classical system may be
expressed as functional derivatives of the local density,
or one-particle distribution function,>°®

=1

uk(x1;-~-7xk’ “‘):(_B];> -5—‘1’_("2_)'—°T5—‘I’(;(5 n(xls“"p)(il:m
2.1

where u is the chemical potential, 8 the reciprocal

temperature, ¥(X) is an external potential, and

n(X, 4, ¥) denotes the one-particle distribution function

for a system in this potential. The notation indicates

that the derivative is evaluated in zero field to give u,

in zero field,

ék-l

If we take
T(x) = D(yx) — d(yx;) (2.2)

where X, is regarded as fixed (since it does not enter
the differentiation), then #(yX;) simply subtracts from
the chemical potential, Thus (2, 1) takes the form

77k(x17 B T d)('yx1))

- 1 kel 6&—1
‘( 5 ) SiGw) 50wy "0 B D lstnmoxp:
(2.3)
Consequently, the functional Taylor expansion of
n(Xy, 4, ) about the value ¥(yX,) of the field, at the point
X, where the density is represented, takes the form

n(Xy, 1, 9) = plp = V(%))
- (=8 f
2 n-1)! %,

n=2

x f R, Ry ey Ky b= )]
n
x

t

[olvxy) = Plyx], (2.4)

2
where the integrations are over all of the coordinate
space, and p(u) is the one-particle density in the ab-
sence of a field and is constant for the fluid states
considered here,

Now we put x; = y/y and change to the integration
variables r; =X;,; - y/y, which yields

w0

n(y/v, u, ) =plp - vy} -+ ?1 [~ BY*/v!]

Xf dri"' j druﬁwi[ri,'-' ’rmﬂ“ll’(Y)]

v
< I [y + yr,) = ()], 2. 5)
j=1
where we have put v=n-1, j=i-1, and
Copyright © 1977 American Institute of Physics 1392



Fry,...,0.q u)zﬁ,,(x,x+ Tiyeou, X+1,.0, 1), (2.6)

which is independent of X because ft,, is translationally
invariant for fluid states. To obtain an expansion in
powers of y, we take i to be an analytic function and
expand Y(y + yr) as a Taylor series:

o

Yy +or) = 730 ;17 y"(r . -%)nz/)(y),

n=

2.7)

where a/ay denotes the gradient operator. We can write

w©

Yy +yr)= 2 (r]"- $7(y), (2.8)
where
=L 2]
s (Y)_nl[ay] b). (2.9)

Here [v]" denotes the tensor product of v with itself #
times (i. e., the tensor with components Vg, V" Vg,)

The product A- B for two tensors of the same rank »
means the sum

X . Aii"'irBii"

Tirecep iy

2. 10)
Using (2. 8), we obtain
(=8 11 [wly +vr,) = 0(y)]

j=
— )

-

yrdnlyrle. . fyr, - ™87 . - S7(- 8)°

T s Mrveermy
:nngv yEMRE. S 2.11)
where
R®=[r J" -+ 1], 2.12)
sn: (_ B)vsnl -
v {1 a1
=1 (W [a—y] {- Bw(y)}), (2.13)

both being tensors of rank n, +n,+ **++n, and A, is
the space of v-tuples (n,,...,n,) where »n,> 1 for all 4.

Substituting (2. 10) in (2. 5) yields
n(y/v, 1, ) =p" 1 - ¥(y)]
5D

 foree f
By — Jdp, -+« [dr
v=1 BE 4, 14 vl ! v

Xﬁ‘v*i[riy-fﬂ s Ty b — w(y)]Rl.sn

=plu~-dm]+229" 2 M{u—-yy)].S?,
T2l nc N

=T
(2.14)
where

1 N
M (i) = ;}—!_fdri "t fderv+1(r1’- <oy Ty L)R® (2,15)
and N, is the set of vectors n (#;> 1), of any dimension,
such that Z»;=7, Both M® and S have rank 7.

Equation (2, 14) is the desired expansion of n(y/y, i, )
as a power series in y, The first term is precisely the
result derived rigorously® in the limit y~ 0, and gives
the result obtained from macroscopic hydrostatics,

The study of the convergence of the expansion appears
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to be a formidable task in view of our limited knowledge
of the Ursell functions, Some progress may be possible
using the “strong cluster properties” of Duneau ef al. ®

Only in the case of the ideal gas is the convergence
of our expansion guaranteed g priori. In this case

n(y/y, ) =A% exp[Bp - v(y)] exactly
so that only the first term of the expansion appears.

Lemwma 1: The M®- 8" are invariant under any
permutation of the components (u,...,n,) of n.

This follows from the definitions (2.10), (2,13), and
(2. 15), and enables us to write (2, 14) in the form

n(y/y, w9 =plu- 4@+ L7 L E@ME-S,

{2.16)
where N’ is the subset of vectors ne N, such that
ny<Sny <nge-+, and K(n) is the number of distinct vec-
tors which can be obtained by permuting the components
of n, It is given by

K(n):(?_;)1 ki(n)>! /‘Ii1 kim)!,

where k;(n) is the number of components of n with val-
ue i, Clearly ); %,(n)=v if n has v components,

(2.17)

For one-dimensional models the tensors are all
scalars, so that (2,14) is the final form. We are how-
ever primarily interested in three-dimensional systems,

3. REDUCTION TO SCALAR INVARIANT FORM

Using properties of the tensors M* and S® enables
one to reduce (2, 14) to a form more suitable for
numerical computations,

Lemma 2: The M® are isotropic tensors.

Proof: It is required to prove that the components
M‘Lt”.af w.r.t, any Cartesian coordinate system are
invariant under rotations, i.e.,

.Z?a AaiﬂlA“252 o .A"‘f‘gf“l’[zl"'ar:‘1121”'31-’
T

01'

(3.1)

where A, is an arbitrary unitary matrix. To prove
this, we note that the left side is the (8y,..., 8, com-
ponent of the expression (omitting p from the notation)

fdri"'drvﬁv*l(rb---arv)[rl'A]"1° -[rv-A]"v. (32)

Putting

ri=r,cA ((=1,2,...,2) 3.3)
yields

dr;=dr} (=1,2,...,v) 3.4)

by the invariance of volume elements under rotation,
and

-~

ﬁvd(ri’---;rv):Fvn(ri’--',rl’;) (3.,5)

by the invariance of the fluid state under rotations.
Hence (3. 2) reduces to M®, as required,

Let e,,...,0, be an orthornormal basis of R”, and
define the elementary tensors

E(P)= 7, n

ai."af I1=iKj=7

(5miaj)P“eal ees ea,ry (3e 6)
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where P is a TX7 permutation matrix of 7-tuples, so
that P;;=0, P;;=P;; and every row and column con-
tains a single 1 and 7—~1 zeros. Equivalently P may be
represented by a graph with every vertex bonded to
one other vertex, where P;; denotes the number of
bonds connecting vertex i to vertex j. Thus P defines a
pairing of the integers 1,2,...,7. For example,

01
E(l O)ZE(r—;): al,Z/;z 8aya,8a8a,
= E eaea, (3' 7)
o
which is the rank-2 unit tensor. Similarly
0100 2
1000
Ely 00 1)7E ~§B €,8,8:8;. (3.8)
0010 4 3

One can readily show that the E(P) are isotropic. The
most general isotropic tensor of rank 7 is expressible
in the form of a sum over graphs (or matrices)

1= 2; A(P)E(P),
P& Py

(3.9)
where the A(P) are arbitrary constants and /2, is the
set of graphs P with 7 vertices. As always, 7 is even.

Each P also defines a contraction or scalar invariant
of I:

I(P)=1-E(P)
=2 A(P")E(P')- E(P)

PI
:Z'A(P')E(P’,P), (3- 10)
where
E(P,P)Y=E(P)- E(P"Y=E(P', P)

= 20 T (8,4 )P0" P10 (3.11)
P

ageera, i

Suppose I' is an arbitrary graph (matrix) with I';;

bonds joining vertex 7 to vertexj (I';;=0,1,2,3,.-+),
We define the value of the graph by
v(M)= 25 T (844 ) H. (3.12)
ogereay ij iF

Lemma 3: ¥ T’ consists of » disconnected graphs
T T" where each T is itself connected, then

(LY =" (3.13)
for a v~-dimensional system.
Proof: We can write

o(Dy= %, 0 n

LT k=1 fhie sk

(Baya) 15, (3.14)
where S* is the set of vertices contained in I'*, This
reduces to

(D)= I b I

T#
r=l o imc SR i, jc sk

n
= ITo(I*). (3.15)
k=1
Since each I'™ is connected, there is a connected
permutation iy,14,,...,i, say, of the vertices of I'* con-
nected in sequence (i to 7y, 75 to Z;, and so on). Any
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additional connections have no effect on v(I'*) because
of the properties of the Kronecker delta, We can there-
fore write

vI®= ) b )

6 Ly
&, cerq RS It Pt Ga‘
i tr

oy

ral ty

(3.186)

=V
ailaii .

=7, 6
aii
Combining (3.15) and (3. 16) proves the statement (3,13)
of the lemma. In particular we have

E(P, P"y=v(P+ P')

n{p+p’)

—p (3.17)

where n(P + P’) is the number of separate parts of

P+ P’ each of which is a connected graph. Since every
vertex of P+ P’ has exactly two bonds, it consists
entirely of distinct closed circuits. For example, if
7=2 the only P is — and

P+P=1">2 (3.18)

so that n(P+ P)=1 and E(P, P)=v. For 7=4 we have
three graphs

1 2 1 2 1 2
*—e
Py= , Py= >< , P3=I I (3.19)
>r—e
4 3 4 3 4 3
so that
1>
P1+P1:ZP1: 5
(e (3. 20)
1 2
P1+P2: E s
4 3

and so on. We can represent the E(P, P') in matrix
form, For 7=4 the matrix is

2

14 v v
E(P;, P)=lv v v (3.21)
v 14 VZ

In general E(P;, P;) is a symmetric matrix of dimension

7!
d= *(—7_-/?)‘—2775 (3.22)

and it is clear that
E(P, Py=v""%,
Lemma 4: The matrix E(P, P’) is positive definite,

To show this, let ¢(P;) ((=1,...,d) be any nonzero
vector, and put

& =7, o(P)E(P), (3.23)

which, because of the independence of the E(P), has at
least one nonzero component ‘1’“1"'% with respect to the
Cartesian basis e;, Now we have

Y, @(P)E(P,PYo(P)=%-@

PP
= U (Bapea)' >0, (3.24)
agreeay
as required,
1t follows that E(P, P’) is a nonsingular matrix,
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Denoting its inverse by E- (P, P’), we deduce from
(3.10) that

A(P)= 2, I(P")E(P, P), (3.25)
PI
Thus (3. 9) becomes
1= I(P)E'(P), (3.26)
P
where
E'(P)= 2, E*}(P, PE(P'). (3. 27)

P’

We have therefore expressed an arbitrary isotropic
tensor | in terms of its contractions I(P).

Now writing M® in terms of its contractions M*(P);

M* =3, MMP)E'(P), (3.28)
I3
we deduce that
M*-S*= 7 MP(P)SM(P')E-(P, P') (3.29)
P, P’
where
SYP)=E(P)-S", (3. 30)
One readily shows that
”n(P):f drl""drqu#i(rls- :rv) {I<—£' (ri'r!)r”
= =y
=m(T), say, (3.31)

where I' is a graph obtained from P and n= (ny,n, - n,)
by coalescing the first n; vertices of P, the next n,
vertices of P and so on. We formally write

F:P/n, (3. 32)

which is a graph with v vertices, and b= %Zni bonds.
For example,

—

(3,1)= Co— . (3.33)
[ 1 2

4 3

With the notation of (2. 14) we now have

Y MP.st= 3 70 MP(P)SM(P')ETN(P, P')

ne N, BEN, B P
=2 0 22 m(D)s(D)EY(P, P')
n I, T’ p:p/a=T
p':p’/a=T’
= 27 a(f, T)m(T)s(I"), (3.34)
r,r
where
s(T)=S"P) for I'=P/n
v 1 9 @ Fu]
={ 1 — I —_
<i=1 ”il) [1$i<lsv<aYi 557;)
X [~ 8]y er (3. 35)
and
o, T=); )  ENP, P, (3.36)

RG34
Now (2. 14) itself reduces to
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n(y/v, ik, ¥)
=plp-9@I+2L ¥ L af, [)m(D)s(r’)
b=t with b bonds
=plp—vm]+ 2 a(l, T Tm(T)y* TIs(I7), (3.37)

r,r’

where #(T") is the number of bonds in I', We note that
a(I',T"}=0 unless I' and I'” have the same number of
bonds and vertices, As before »(I') is a function of
w—=y@). It is, of course, a simple matter to include
pli - #(y)] in the summation using suitable definitions.

The graphs in (3.7) are labelled. As an alternative
we can use (3, 4) and obtain

n(y/v, i, ) =plu - Hy)]
+ 2

r,r
unlabelled

YRR (TYm (D) (T, T7) K(T)s(T),

(3.38)
where K is given by (3.5), or equivalently by
K(D)=v!/ky(I)

= number of inequivalent labellings of I', (3,39)

where %£,(I') is the number of vertices of T which have
¢ bonds attached. We note that K(I')=K(I'’) if o(T", I'’)
#0,

Equation (3. 37), or (3.38), gives the desired expan-
sion of the density on powers of y, It involves only
scalar moments m(I') of the modified Ursell correla-
tion functions.

4. INITIAL TERMS OF THE SERIES

The coefficient of 3* in the series (3. 38) involves
graphs I' and I'’ which have one bond, namely

4.1)

There is only one permutation graph P with 2 vertices,
viz,,

Qando——O.

P= —. 4.2)
Hence the graphs (4, 1) have the unique decompositions

Q =P/0,2),

—— —P/1), (4.3)
since n= {1z, ;) € Nj. Then (3. 36) gives

a(e—e e—e)=E(P P)=1/v,

a<Q | Q): EP,P)=1/v, 4.4)

Q(Q, 0——-0):0.,
The moments are

m( Q)= dr Bilr, u~ o) 2| 4.5)
and

m(e—e)= [ dridry Fyry, 10, 4~ py)iry 15,  (4.6)

and the field derivatives,
s({)=:v[- Buy)]

and

using (2.13) and (3. 35), are
4.7)
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S(’-*)—] SoBY( (4. 8)
while, from (3, 39)

K(Q)=K(—se)=1. 4.9)
The complete coefficient of ¥* is therefore
- B/2)([ dr By@)[r [V

+ (B[ dry [ dr, Fy(ry, ey [aw/ay |2, @.10)

The coefficient of y4 involves all graphs with two
bonds, namely,

= I YA

*-—a

and . (4.11)

>~—

With the definitions (3. 19), these have the
representations

X:P,./(4), i=1,2,3,
<> =P,/(2,2), i=2,3,
L =P,/(1,3), i=1,2,3,
0 0 =rre,

/[ =P/(,1,2), i=2,38,

L:Pi/(1,1,2>,

*——

:Pi/(lyl, 1y1)y

e

i=1,2,3. (4.12)

To calculate the a’s, we need the inverse of the
matrix (3.21),
v+1 -1 -1

1
-1 —
E (Pr',Pf)- ( -1 v+1 ~1 .

v v-—2)(v+—2)

-1 -1 v+1

Then we obtain (4.13)

3
N 3
* X X =L EE PP =T

while

a( >, )

=725 Y EWP,L,P)=2/(v-1)(v+2).
$=2,3 7=2,3

In a similar manner we find

o, L o=el(l =3+,
g 9. g pead, T

=+1)/viv-1

nd
a L, L )=2(v+1)/v(v-1)(¥+2).
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) +2),

Since two different graphs make a contribution only if
they can be represented via the same n, we have

o>, § =2 Evp,P)

i=2, 3

==-2/v(v-1)¥+2)
VAN

while all other o’s are zero. All that remains is to find
the K(T'), write down the » (I} and s(I'), and substitute
in (3. 38).

5. THE DENSITY PROFILE USING CLASSICAL
CORRELATION FUNCTIONS

From Eq. (4.10) we deduce that for a uniform gravi-
tational potential
¥(y)=k-y, (5.1)

the density has the expansion
n(y/v, W) =p(n—k-y) +[(Byik1)?/2v]f dr, | dr,

X Fy(ry, Ty, = Ko y)ry o T + O(Y, (5.2)

For 1:"3 we take the generalization of the Ornstein—
Zernike correlation function,’ derived from a mean-
field formulation, It has the Fourier transform

F31,02) = | dry | dryexp[2mi(p; -1y +py- !‘2)]1:‘3(1‘1, ry)
= - (a}/B*){ad + K (py)Ha + K (py)}
K(p, +pa)il™ (5.3)
where
K(p)= [ drK(r) exp(2nip - 1). (5. 4)

Here K(r) is the attractive part of the interaction poten-

tial and
aS = a"ao/ap", (5.5)

where a’(p) is the free energy per unit volume in the
absence of the attractive interaction K, and p is the
density, both evaluated for the chemical potential
p-K-y.

We deduce from (5. 3) that

_/‘ drtj. drz ﬁ‘:}(l"h rg)r1 * T

-1 0 0
= (—27—’,-5? _8-5; .a_p;}fi(ph pZ) ‘F1=92=0
=+ npallad + a)"82, (5.86)
where
a=/ drK(r), (5.7)
mz:f dr|r|2K(r) (5. 8)
The second term in (5. 2) therefore reduces to
+ (v| R |2/2vmyad(ad + @), (5.9)

When only a single phase is present in the system, it
is known' that the free energy per unit volume is given
by
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a(p)=a"(p) + zap’. (5.10)

Consequently,

(5.11)

(5.12)

I

5/
ap?f \aun/ -

Consequently, (5. 2) reduces to
n(y/v, 1) =pu -k y) - [(y|k|)2/20]m,

xp'(u-k-y)p"(n-k-y)+00*4. (5.13)

To estimate the magnitude of the correction term, we
assume that the van der Waals equation

p=pkT/(1 - pd)+ zap

holds for the fluid, Here 0 is the molecular volume and
a <0 is given by (5.7). The resulting chemical potential
is given by

(5. 14)

Bu=1logr /5 +log[n/(1 -m]+n/A-=9)+Cn  (5.15)
where
C=ap/s, (5.16)

and A is the thermal wavelength, Differentiating (5, 15)
gives

W _ B 1 )‘1
p =5 = 5(11—(1—-—_71)2 +C (5.18)
and
p”=%
__a_z( 1 )-3 Bn-1)
== S \na-a2*C¢) Fa-aF- (5.19)

For the interaction potential we take a Lennard—Jones
(12, 6) potential

0 for s<o

K(s)= (5. 20)
4e[(0/s)2 - (0/5)%] for s>a,

which has a minimum - ¢ at s =2!/%0, We deduce that in
v =3 dimensions

a=- (321/9)0? (5. 21)
and
my =— (967/7)k0®, (5. 22)

Substituting (5. 18 to 22) in (5.13) and setting y=1
gives
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n(y, u)6=n - (161/ T)(E*B%0®/8)d (n) (5. 23)
where
_ Bn-1) 1 -4
¢(n)"n2(1_n)3(n(1_1ﬁz +C) (5. 24)

and 7 has the argument y — k-y, The van der Waals
equation of state has a critical temperature given by

B,=216/4|a|=(3%/2"7)(8/e0®). (5. 25)
If we introduce the dimensionless temperature
6=3./8, (5. 26)
then (5. 23) reduces to
315 k252 ( )
n(Y,Ii)5~TI—§TWE-2?r%?- (5. 27)

Taking o to be the effective molecular diameter gives

6:77'0’3/6, (5. 28)
and (5. 27) reduces further to
3" (iklo\?
n(Y, “)Ozn— WB( € o) %(ﬂﬂl ’ (5.: 29)

where the numerical coefficient reduces to 2-61. In the
case of argon we have the values

e=1-65%x10"% Joule,

6=3-421x10""" meter,

We are primarily interested in the gravitational field
where 2 =mg, Here

m=6,7x10"2 kgm

is the mass of the argon atom and g=9. 8 meter/sec’ is
the acceleration due to gravity, Then we have

|k|o/e=1.36x10"13, (5. 30)

which measures the ratio of the gravitation potential en-
ergy to the interaction potential energy over the same
distance o,

Consequently, the second term in (5. 29) is small ex-
cept near the critical point where ¢ (n) becomes arbi-
trarily large. Suppose 6 has its critical value 1 and n
is close to its critical value 3,

n=3+x,

where X is small, Then to leading order in X we find
that

B (n) = (213/318)\7 (5.31)
so that (5. 29) becomes
nly, p)=s+rx— (1-36x1071%/7.25. 347, (5.32)

Consequently, for x of order 1/100 or smaller, the
correction term becomes significant.

For states far removed from the critical condition
the correction term is negligible. This indicates that
the hydrostatic law (1, 1) holds with a high degree of
accuracy.

It should be emphasized that the analysis gives only an
indication of the departure from the hydrostatic laws
since we have not estimated the later terms, We note
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however that later terms contain higher powers of the
factor 1klo/e, so that it is reasonable to expect that
their contribution will be relatively small,

The sign of the correction term can best be seen
from (5.13). We note that p’ > 0 and m, <0, while

”{>0 for pd <%,
p

<0 for p&> 3,

We conclude that the correction term is positive for

pd <% and negative for pd> 3 Furthermore, both p’ and
p” tend to zero as | —k-yl tends to infinity. Conse-
quently, (5.13) indicates a correction to the shape of the
interface p(u — k- y) which is negligible for distances v
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from the interface which are much greater than megl s
where (. is the chemical potential at the critical point,
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The class of continuous timelike curves determines the

topology of spacetime*

David B. Malament

Department of Philosophy, University of Chicago, Chicago, lllinois 60637

(Received 23 August 1976)

The title assertion is proven, and two corollaries are established. First, the topology of every past and
future distinguishing spacetime is determined by its causal structure. Second, in every spacetime the path
topology of Hawking, King, and McCarthy codes topological, differential, and conformal structure.

1. SUMMARY

Suppose one has two spacetimes (M,g) and (M, g")
together with a bijection f: M — M’, where both f and
1! preserve continuous timelike curves; i.e., if y:
I— M is a continuous timelike curve in (M,g), then
fey: I—M' is a continuous timelike curve in (M’, g');
and symmetrically for f-!. We show that f must be a
homeomorphism. In this sense the class of continuous
timelike curves in spacetime determines its topology.

The result is of interest because, at least in some
sense, we directly experience whether events on our
worldlines are “close” or not. That experience alone,
it appears, allows a complete determination of topo-
logical structure. The result also has two consequences
which are of independent interest.

It is well known that in all strongly causal spacetimes
the Alexandroff topology is equal to the manifold topo-
logy.! Hence, at least in strongly causal spacetimes, if
one knows of all points p and ¢ whether it is possible
that a particle travel from p to g, then one can recover
the topology of spacetime. The question naturally
arises whether the condition of strong causality is
necessary for this recovery. We show that it is not.
The weaker condition of past and future distinguish-
ability suffices. One has the following result: If (M, g)
and (M',g’) are past and future distinguishing space-
times and if f: M — M’ is a causal isomorphism (i.e.,

a bijection where both f and f-! preserve the causal
connectibility relation «), then f must be a homeo-
morphism. But we also show that the assertion be-
comes false if the hypothesis of past and future distin-
guishability is relaxed to that of future distinguishability
{(or past distinguishability) alone.

A second consequence of our theorem is an improve-
ment of a result of Hawking, King, and McCarthy.?
They define a path topology on spacetimes and prove
that, in the presence of strong causality, the path to-
pology “codes” (standard) topological, differential, and
conformal structure. We show that their hypothesis of
strong causality is unnecessary. Indeed their result is
true of all spacetimes.

2. STANDARD DEFINITIONS AND RESULTS

In what follows a spacetime (M, g) is taken to be a
connected, four-dimensional smooth manifold without
boundary M, together with a smooth pseudo-Riemannian
metric of Lorentz signature g. Spacetimes are as-
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sumed to be temporally orientable and endowed with a
particular temporal orientation.

Given subsets A and O of M with O open, I'(4,0) is
the set of points ¢ in O such that there exists a future
directed smooth timelike curve y: I~ O (where ICR is
connected) and points #;,4, < I such that ¢, <t,, y({t)c A,
and y(t,) =q. I'(4, 0) is called the chronological future
of A relative to O. The causal future of A velative to O,
J*(A,0), is the union of AN O with the set of points ¢
in O such that there exists a future directed smooth
causal curve (i.e., a smooth curve whose tangent vec-
tors are everywhere nonvanishing, nonspacelike, and
future directed) y: I— O and points {,,t,c I such that
t,<ty, y{t,)e A, and y({t,) =q. Finally, the horismos
futuve of A velalive to O, E*(A,0), is the set J'(4,0)
—I'(4,0). These sets have duals I7(4,0), J-(4,0), and
E-(A,0) which are defined analogously (substitute past
directed curves for future directed curves). I(4,0) is
the union (A, 0)U I"(4,0). The sets J(4,0) and
E(A,0) are defined similarly,

If A={p}, we write I*(p,0) instead of I*(4,0) and
I*(p) instead of I*(p,M). Similarly for the other I, J,
E sets. The relations gc I*(p,0), ge J*(p,0), and
g< E*(p,0) will sometimes be written as p<< ¢(0),
p<q(0), p— q(0). Furthermore, p< q(M), p<qM), and
p— qM) will sometimes be written as p<< ¢, p<g, and
b—gq.

The I, J, E sets have the following basic properties.?
If ge F(p,0), then pcl-(g,0) and conversely (similarly
for the J and E sets), Both I*(p, 0) and I'(p, O) are
open. If p<«< g(0) and g <#(0), then p<«< »(0). Similarly,
if p<q(0) and g<«< 7(0), then p<«<#(0). If p — ¢(0), then,
if y: [0,1]~ 0 is a future directed smooth causal curve
with ¥(0) =p and (1) =¢, y must be a null geodesic.

An open set O is convex iff given any two points p and
g in O there is a geodesic y: [0,1]— 0 with y(0) =p,
¥{1) =¢ and y is unique (up to reparametrization). If O
is an open convex set, then, for all points p in O,
J*(p,0)=Cl[I*(p,0)] =the closure in O of I(p,0); and
E*(p,0)=Bnd[I*(p, 0)] = the boundary of I*(p,0)} in O.
{These assertions are false in general if O is not con-
vex. But J*(p,0)C Cl[F*(p, 0}] and E*(p,0) < Bnd{I*(p, 0)]
are always true.} Dual assertions hold for J- and E-,
The open convex sets form a basis for the manifold
topology; i.e., given any point p and any open set U con-
taining p, there is an open convex set O with pe OC U.

A set A is achronal in O iff for all points p and ¢ in
AN O, it is not the case that p« ¢(0).
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A spacetime (M, g) is chronological iff it admits no
closed, future-directed smooth timelike curves. (M, g)
is causal iff it admits no closed, future-directed smooth
causal curves.

A spacetime (M, g) is future (resp. past) distinguish-
ing iff for all p and q: I*(p)=1I*(g) = p=gq (resp. I"(p)
=1(q) = p=¢q). Equivalently, (M,g) is future (resp.
past) distinguishing iff for all p in M and all open sets
O containing p, there exists an open set O, with
p e 0,< 0 such that no future (resp. past) directed
smooth timelike curve through p which leaves O, ever
returns to it.

Finally, a spacetime is strvongly causal iff, for all
points p and all open sets O containing p, there exists
an open set O, with pe 0, C O such that no future direct-
ed smooth timelike curve which leaves O, (whether or
not if passes through p) ever returns to O,.

If (M,g) is a spacetime and OC M is a connected
open set, then we may think of (0,g,,) as a spacetime
in its own right, If O is convex, (0, g,) is necessarily
strongly causal.

These “causality conditions” can be ordered in terms
of (strictly) increasing strength:

strong causality
future and past distinguishability
future (or past) distinguishability
causality
chrojfllology
The respective converse implications are all false.

If (M,g) is a spacetime, the Alexandroff topology on
M, T ,, is the coarsest topology on M in which all sets
I*(p) and I"(g) are open. The collection of all sets of
form I*(p)N I~(q) form a basis for 7 ,. If 7 is the
(standard) manifold topology on M, then it is always
true that / , C7 . But the condition / , =7 is equivalent
to strong causality. Suppose (M, g} is strongly causal.
Then the condition that a set AC M be open (in 7) is
explicitly definable in terms of the relation «: A is
open iff, for all points p in A, there exist points v and
s in A such that pe P(r)NI-(s)C A.

Given two spacetimes (M, g) and (M’,g’), a bijection
fi M— M is a smooth isomelry iff f and f~! are smooth,
and f,(g) =g'. fis a smooth conformal isometry iff f
and f-! are smooth, and there is a smooth nonvanishing
map §2: M’ —~ R such that f, (g) =R%g"*.

So far “causal structure” has been developed entirely
in terms of smooth curves. For our purposes it is
essential to work with the larger class of continuous
curves. Suppose y: I— M is a continuous curve. We
say that y is future dirvected and timelike iff, for all
to< I and all open convex sets O containing f(¢,), there
exists an open (i.e., open in the relative topology on
I) subinterval I CI containing ¢, such that

teT and t<t=>y()<y() (0), (%)
teT and ¢, <t=>y(t,) <y ({) (0).

We say that y is future divected and causal iff the above
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condition obtains but with « replaced by < in (*). Final-

ly, we say that y is a future divected null geodesic iff
the above condition obtains but with (*) replaced by

thotye T and £ <1,=>y () —y(t,) (0).

Note that every future directed continuous null geodesic
can be reparametrized so as to become a (smooth)
future directed null geodesic. (The corresponding as-
sertions for continuous timelike and causal curves are
false.) Dual definitions can be given for past directed
continuous timelike (causal, null geodesic) curves.

The sets I*(4,0), J*(A,0), E*(A,0) could be redefined
in terms of continuous curves, but doing so would not
affect the resultant point sets. For example, p<< ¢(0)
(according to our definition involving smooth timelike
curves) iff there is a future directed continuous time-
like curve y: I = C and points ¢,,¢,& I with {, <i,,
y(t)=p, and y{t,) =gq.

When there is no chance of confusion we shall not
distinguish between curves y: I— M and their point set
images y[I]. Also, we shall sometimes refer, simply,
to continuous (causal, null geodesic) curves and it
should be understood that the curves are either future
or past directed.

3. FROM TOPOLOGICAL STRUCTURE TO
DIFFERENTIAL AND CONFORMAL STRUCTURE

We shall prove that the class of future directed con-
tinuous timelike curves determines the topology of
spacetime. Having done so, it will follow automatically
that this class of curves also determines the differen-
tial and conformal structure of spacetime. This is all
that one can hope for since all conformally equivalent
Lorentz metrics on a manifold induce the same con-
tinuous timelike curves.

That differential and conformal structure will follow
on the heels of topological structure is a consequence
of:

Hawking’s theovem®: Suppose (M, g) and (M',g’) are
spacetimes and f: M — M’ is a homeomorphism where
both f and f~! preserve future directed continuous null
geodesics, Then fis a smooth conformal isometry.

To avail ourselves of this result, we need a simple
lemma.

Lemma 1: Suppose (M,g) and (M’,g’) are spacetimes
and f: M — M’ is a homeomorphism where both f and
f~! preserve future directed continuous timelike curves.
Then both f and f-! preserve future directed continuous
null geodesics.

Proof: It suffices to observe that the future directed
continuous null geodesics of a spacetime (M, g) can be
characterized in terms of its future directed continuous
timelike curves and its topology.

First, given any open set U and points p,q in U, we
have that g Bnd[F*(p, U)] iff for all future directed
continuous timelike curves o: (0,1) = U, if o(f,) =q for
some #, where 0 <{,<1, then there exist {,,¢, where
0<t,<t,<t,<1 such that o(t,)& I*(p,U), but o(4,)
el*(p,U).
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Next, note that if y: I— M is a continuous curve, then
y is a future directed null geodesic iff for all ¢, I and
all open sets O containing y{/,), there exists an open
set UC O containing y(¢,) such that for all ¢,,¢,c I with
t, <t, if y(ty), y(t,) € U then y(t,) e Bnd[I*((,), U)]./

4. THE PRINCIPAL RESULT AND ITS CONSEQUENCES

Theorem 1: Suppose (M, g) and (M’,g’) are space-
times and f: M — M’ is a bijection where both f and f-!
preserve future directed continuous timelike curves.
Then f is a homeomorphism. (By Hawking’s theorem f
must also be a smooth conformal isometry.)

A proof of the theorem is given in the next section.

As it is stated, the hypothesis of the theorem is
slightly stronger than necessary. It suffices that f and
f~* take (past or future directed) continuous timelike
curves to (past or future directed) continuous timelike
curves,® This follows immediately from the following
lemma,

Lemma 2: Suppose (M, g) and (M’,g’') are spacetimes
and fi: M — M’ is a bijection. Suppose further that both
f and f-! preserve continuous timelike curves. Then
either: (a) Both f and f-* preserve future directed con-
tinuous timelike curves, or (b) both f and f~! take future
directed continuous timelike curves to past directed
continuous timelike curves.

Proof:. Let p be any point in M. Suppose there are
future directed continuous timelike curves y and o
through p such that fcy, but not f-0, is future directed
in (M’,g"). Let ¥~ be the “lower segment” of y with
future end point p. Let 0* be the “upper segment” of ¢
with past end point p. Then the continuous timelike
curve which results from “linking” v~ with o* is one
whose image under f is not a continuous timelike curve
at all. This is impossible. So at least as restricted to
continuous timelike curves through some particular
point in M, f either systematically preserves or system-
atically reverses orientation.

Let A (resp. B) be the set of points in M at which f
preserves (resp. reverses) orientation. We show A4 is
open. Suppose p is in A and p < ¢ for some point q.
Then there is an open set O with pe OCI-(q). Let y be
a future directed continuous timelike curve with initial
point p and terminal point g. Suppose now there is a
point ¥ ON B. Let 0 be any future directed continuous
timelike curve with initial point » and terminal point
q. Then the result of linking v with 0 is not a continuous
timelike curve, but its image under f s a continuous
timelike curve. This is impossible since f-! preserves
continuous timelike curves. Therefore, OC A and so
A is open as claimed. A symmetric argument establishes
that B is open.

It thus follows that f either systematically preserves
or systematically reverses the orientation of continuous
timelike curves. The same argument applies to ! and,
of course, f preserves orientation iff f-! does too./

We consider now the question whether the topological
structure of spacetime can be recovered from its
causal structure. Rather than thinking of the topological,
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differential, and conformal structure of spacetime as
given and abstracting a causal connectibility relation
<«, we ask if the construction can be turned “on its
head” with the relation « construed as primitive. It
turns out that it can be if the spacetime in question is
sufficiently well behaved in its causal structure. “Suf-
ficiently well behaved” means “at least past and future
distinguishing.”

If (M, g) and (M’, g’') are spacetimes, a map f: M — M’
is a causal isomorphism iff f is a bijection and for all
points p and ¢ in M: p < q<=>f(p)<<f(g). Our result fol-
lows from the following lemma,

Lemma 3: Suppose (M,g) and (M’,g’) are past and
future distinguishing spacetimes and that f: M — M’ is a
causal isomorphism. Then f and f-! preserve future
directed continuous timelike curves.

Proof: Suppose y: I— M is an arbitrary future directed
continuous timelike curve in (M, g). Suppose p=y(t,)
with ¢, I, and suppose O’ is an arbitrary open convex
set containing f{p). We must show that there exists
an open subinterval 7 C I with t;e 1 such that

tel and t<t=>(for)()<f(p) (0'),
tel and t, <t=>f(p) < (foy)(t) (O). (*)

Since (M’,g’) is future distinguishing, there is an
open set U’ with f{p)e U’ C 0’ such that no future direct-
ed timelike curve from f(p) which leaves U’ ever re-
enters. Let f(g) be any point in I*(f(p), U’). Since
F)<flg), we must have p<< g. So there must exist
an open convex set O with pe O0STI''(g). Since y is a
future directed continuous timelike curve, there must
exist an open subinterval 7, C I with {,c I, such that

tel, and t, <t=>p<y(t) (0).
We claim now that
p<y(t) (O)=f(p)<(for)t) (0.

For, if p<y(#)(0), we have p<<y{t)<«< ¢q. Hence f(p)

< (foy}(t) << f(g). So there exists a future directed
smooth timelike curve through f(p), (fey)(¢), and f(q)
in sequence. We know that this curve cannot leave U’
between f(p) and f(q). So we must have (f<y)(t)
cP(f(p), U (f(p),0).

A parallel argument using past distinguishability
of (M’,g’) establishes that there is an open subinterval
1,C1 with t;c 1, such that:

te I, and t <t,=>(foy)(t) < f(p) (0).

Hence the set T ={teT,/t> t,}U{tcI,/t <t} is an open
subinterval of I with t,c T which satisfies (*)./

Thus we have

Theorem 2: Suppose (M, g) and (M',g’) are past and
future distinguishing spacetimes and f: M~ M’ is a
causal isomorphism. Then f is a homeomorphism. (By
Hawking’s theorem f must also be a smooth conformal
isometry.)

As was the case with Theorem 1, Theorem 2 can be
recast so as to be completely “time symmetric” in
formulation.% Let T be the symmetric causal connect-
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ibility relation on spacetime points defined by pTq <=> p
<« g or g< p. Given two spacetimes (M,g) and (M’,g’)

a map f: M~ M’ is a symmetric causal isomorphism
iff f is a bijection and for all points p and ¢g in M:

pTq <=>f(p)7f(q). To recast Theorem 2 in symmetric
form, it suffices to prove the following lemma and in-
voke Lemma 2.

Lemma 4: Suppose (M,g) and (M’',g’) are past and
future distinguishing spacetimes and that f: M~ M’ is
a symmetric causal isomorphism. Then f and f~! pre-
serve continuous timelike curves.

One proves the lemma by compounding the construc-
tions of Lemmas 2 and 3. We skip the argument as it is
somewhat tedious and involves no new ideas.

The following example shows that the hypothesis of
past and future distinguishability in Theorem 2 (and
hence Lemma 3) cannot be relaxed to either future dis-
tinguishability or past distinguishability alone. We give
the example in a two-dimensional version to simplify
matters.

Start with the two-dimensional plane carrying a
metric:

ds?= (cosht — 1)?(df? — dx?) + dtdx

with respect to global Cartesian coordinates f,x. Next
form a vertical cylinder by identifying the point (¢, 0)
with all points (¢,2n) for all n. Finally excise two
closed half-lines: {(/,x): x=0 and ¢ > O} and {(¢,x): x=1
and ¢ > 0} (see Fig. 1.) Along the “equator” t=0 the
metric reduces to the form ds?=dtdx and its associated
null cones are horizontal, pointing in the direction of
increasing x. But as |t —, the cones “tip to the left”
and asymptotically approach the upright position they
have in Minkowski spacetime. Because of the excisions
the spacetime is future distinguishing. But it is not past
distinguishing, Every point on the /=0 equator has for
its chronological past the entire region of the space-
time falling below the equator.

Now let f be a bijection of the spacetime onto itself
defined by
if t <
Pl ~ (z,x) if 1<0,

(t.x+1) if 1=0.

f leaves the “lower open half” of the spacetime fixed,
but reverses the position of the two upper slabs. fis
surely discontinuous along the =0 equator; it “cuts”
continuous timelike curves which cross the equator.

I
i
AV
excise—— Akemse
: LU

(L o

FIG. 1.
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But fis a causal isomorphism. The important thing to
notice here is that every point below the /=0 equator

has all points in both upper slabs in its chronological

future.

This establishes that the condition in the hypothesis
of Theorem 2 cannot be relaxed to future distinguish-
ability. A symmetric example (with excisions below the
t =0 equator) shows that it cannot be relaxed to past
distinguishability either.

Finally, we use Theorem 1 to generalize a result of
Hawking, King, and McCarthy.? They define the path
topology on a spacetime to be the finest topology which
induces on all continuous timelike curves the same
topology induced on them by the standard manifold topol-
ogy. Equivalently, if (M,g) is a spacetime with AZ M,
A is open in the path topology on M iff given any con-
tinuous timelike curve y: I— M there exists a (stan-
dard) open set O such that y[I]n A=4[I]Nn O. Their
interest in the new topology is motivated in part by the
belief that, in some sense, we “experience” continuity
along future directed continuous timelike curves. The
standard topology, they claim, has no comparable
physical significance.

Hawking, King, and McCarthy prove that given any
strongly causal spacetime (M,g), if f M—Mis a
homeomorphism with respect to the path topology, then
f must be a smooth conformal isometry. But along the
way they prove the following:

Lemma 5% If (M, g) is a spacetime and f: M~ M is a
homeomorphism with respect to the path topology, then
both f and f-! preserve continuous timelike curves.

Thus it follows immediately that we have

Theovem 3: 1f (M,g) is an arbitrary spacetime and f:
M — M is a homeomorphism with respect to the path
topology, then f is a smooth conformal isometry.

One can easily reformulate the theorem so as to be
parallel in form to Theorems 1 and 2. One simply takes
f: M— M to be a path topology homeomorphism be-
tween arbitrary spacetimes (M,g) and (M’,g’). The
conclusion is affected not at all,

5. PROOF OF THEOREM 1

If it were assumed that f preserves all continuous
curves, it would follow immediately that f is continuous.
Given any sequence {pl} converging to p, one could
find a continuous curve “threading” all the p, in se-
quence and then p. Its image would have to be a con-
tinuous curve threading all the f(p,) in sequence and
then f(p). Hence { f(p)} would have to converge to f{p).
Under our hypotheses, however, this construction can
only cope with sequences {pi} which converge chrono-
logically to p. The problem is with those sequences
{p,} which converge to p but are locally spacelike re-
lated to p.

Our proof is rather long and so is divided into a se-
quence of lemmas. The crucial idea is this: To show
that f is continuous at p, one proves that one may as
well assume that f is continuous over a nice-looking
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region near p (Lemma E). Then one uses continuous
null geodesic segments in that “safe region” to char-
acterize the convergence of points to p. This does the
trick because (by Lemma 1 above) continuous null geo-
desics in the safe region are necessarily preserved by
f.
In what follows /) (resp. /)’} is taken to be the set of
points at which f (resp. f~!) is discontinuous.

Lemma A: If O is an open set in M, O’ is an open
convex set in M’, and f[O]C0O’, then OCM~)).

Proof: Let p be any point in O. To show f is continuous

at p, it suffices to show that given any open set U’ con-
taining 7 (p), f-[0’ N U’] is open in M. Since O’ is con-
vex, the spacetime (0’, g,,,) is strongly causal. So the
Alexandroff topology on O’ is equal to the relative mani-
fold topology induced in O’ Thus U’'N O’ is open in the
Alexandroff topology on O’. But f,:0— 0’ is certainly
continuous with respect to the Alexandroff topologies on
O and 0’. So f-}{U'n O'] must be open in the Alexandroff
topology on O. A fortiori f-{U'N (] is open in (the
manifold topology on) M./

Lemma B: Given p in M, there is an open set O in
M containing p such that I(p,0)C M =/). (So fis at
least continuous over “local futures and pasts.”)

Pyoof: Let O be an open convex set containing f(p).
We show first that there is an open set O containing p
such that f[I*(p,0)]C 0.

Suppose there is no such O. Then given any open O,
containing p there must be a point p, in O, such that
poeF(p,0,) but f(p,)&0O’. Since I-(p;,0,) is open, we
can find an open set O, < O, containing p such that
0, I7(p,,0,). There must exist a p, in O, such that
pae F(p,0,)CI(p,0,) but f{p,)d O'. Clearly p, << p,(0,).
Continuing in this way, we can generate a nested se-
quence of open sets O, = 0, = 0, ** all containing p, and
a sequence of points {p,} where, for all i, p,= O, p.,

<<pi(0i)‘ p<< pi(()i), butf(pi)@;‘ 0’ (see Fig. 2), Further-

more, we may choose the {Oi} so that they converge to
p (i.e., so that their intersection is {p}). Now we can
certainly join p.,, to p, with a continuous future directed
timelike curve segment y,; contained in O,. Linking
these segments together and adjoining the point p, we
obtain a future directed continuous timelike curve y
through p which “threads” all the p,. By our construc-
tion no initial segment of f<y can intersect O’, But this
is impossible since f-yis a continuous timelike curve
through £ (p).

Therefore, as claimed, there is an open set con-
taining p—call it O,~such that f[I*(p,0,)]< 0’. Simi-
larly, there is an open set O, such that f[I-(p,0,)]C 0’.
Let 0=0,N 0,. Then clearly, f[I{(p,0}]< 0’. It now
follows by Lemma A that I{p,0)C M -/) ./

Lemma C: f and f-! preserve continuous causal
curves.

Proof. Let y: I— M be a future directed continuous
causal curve in M with y({,)=p for some {;c I. Let O’
be any open convex set containing f(p). We must show
that there exists an open subinterval 7 C 7 containing ty
such that:

tel and ¢ <t=>(foy)(t) <f(p) (0",
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teT and t, <t=>f(p) <(fev)(t) (O). (*)

Just as in the proof of Lemma B we can show that there
must exist an open set O in M containing p such that
FlI(p,0)]< 0’. By moving to a subset we may take O to
be convex. We choose / C I containing ¢, so that:

tel and t<t=y(t)<p (0),
teT and t,<t=>p<y(t) (0).

Now if ¥(f) <p, then every continuous timelike curve
segment through y(¢) intersects 7-(p, 0). Hence every
continuous timelike curve segment through (f cy)(f)
intersects I*(f(p), 0’). Thus (f<y}(t)e CLI~(f{p),0')]
and therefore, since O’ is convex, (foy)(t)e J=(f(p),0’).
Thus the first half of (¥) is established. The second

half is symmetric. Hence f -y is a future directed con-
tinuous causal curve. (The argument for ! is, of
course, symmetric.)/

Lemma D: (i) /) is closed in M; /)’ is closed in M.
(i) For all pe M, pec /) iff f(p)e /).

(iii) If pe /), then there is an inextendible future
directed continuous causal curve through p fully con-
tained in/).

Proof: Suppose f is continuous at p. Let O be any
open convex set containing f(p). Let O be an open set
with pc O Cf-[0°]. Then, applying Lemma A, we have
that 0C M ~/). Thus M - /) is open. Similarly M’ - /)’
is open. So (i).

Suppose p is in/). Then there exists a sequence {p{}
which converges to p and an open convex set O’ in M’
which contains f(p) but none of the f(p,). We can find
sequences {r;} and {s ;} converging chronologically to p
from below and above respectively such that for each
i there is a local future directed continuous timelike
curve y, through p, with initial point 7; and terminal
point s,. The only accumulation point of the vy is p.

Now {7 (r;)} and {f(s,)} must converge to f(p). So
(passing to a subsequence if necessary) we may assume
that all fey, begin and end in O’. But since f(p,) & 0’,
each of these curves foy, must leave O’ as well, There
will be a future directed inextendible continuous causal
curve A through f(p) every point of which is an ac-
cumulation point of the foy, .® Since the only accumula-
tion point of the y, is p, it must be the case that
a-{f(p)}cp’. Sinces) is closed, it follows that A
CP'. Thus pe) =>f(p)e)’. The converse is sym-
metric. So we have (ii). For (iii) we need only repeat
this past argument with respect to 7( p} and f-*./
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Lemma E: 1f /) # @, then there exists an open convex
set O with/) N O#@® such that:

(i) /) is achronal in O.

(ii) Through each point p in/) N O there passes a uni-
que continuous null geodesic I‘P such that T', N oc/.

(iii) Given any continuous null geodesic I" which in-
tersects ) N O, either TNOCH orTNONYJ) is a
singleton.

Proof: First note that (ii) and (iii) follows from (i) in
view of Lemma D, For (i) suppose /) #@ but no O exists
satisfying the required conditions. Let O, be any open
convex set meeting /) with compact closure. By our
assumption we can find points #, and s, in O;N /) such
that 7, « s,(0,). Now let O, be any open convex set where
v, € 0,C1(s,;,0,). Repeating the argument with respect
to O,, we can find points r, and s, in O,N /) such that
¥, << 5,(0,). Certainly s,<< s,;{0;). Continuing in this
fashion, we generate a sequence {si} in O;N /) with
S, <<5,(0,) for all i. This sequence must have an ac-
cumulation point s. But now if we apply Lemma B to
s, we find that there must exist an open set O contain-
ing s such that I*(s,0)C M -/). This leads to a con-
tradiction since eventually all the s, must enter
I'(s,0,)./

Prcof of the Theorem: Suppose /) #© and O is as in
Lemma E. Let p be any point in /) N O with correspond-
ing I',. Clearly I(I',n 0,0)C M~ /). There must exist
a Ssequence {pi} converging to p and an open convex set
O’ containing f(p) but none of the f(p,).

Let & be any future directed continuous null geodesic
segment through p distinct from I', which is sufficiently
“short” that foQ is fully contained in O’. There exist
continuous null geodesic segments &, within O, passing
through p, respectively, which converge to & in the
sense that every open set which intersects Q intersects
eventually all £,. We may choose {Q,} so that it has no
convergence points off ., Eventually all 9.' enter
I(T,n 0, 0) and hence M ~/) . It follows from Lemma
E (iii) that, for eventually all i, ,0/) is either empty or
a singleton. The intersection point of Qi with /) (if there
is one) comes either “before p,,” at p; itself, or “after
p;.” Without loss of generality we may assume that
there is an infinite subset of {Q,} in each member of
which the intersection point with /) (if there is one) does
not come before p,. Now let &; be the “lower-half” of
2, with future end point p, included. By moving to a sub-
sequence we can thus find a sequence of continuous null
geodesic segments {Q;} in O with the following prop-
erties (see Fig. 3):

(i) {Q7} converges to the lower half Q- of &, but has
no convergence points off Q-.

(ii) For each i, @;n ) <{p,}.

From (ii), Lemma C, and Lemma 1, it follows that
each image curve foQ; is a continuous null geodesic
segment in M’. From (i) and the fact that Q- -{p}CM -/,
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it follows that these segments converge to fo -

Now recall that no point f(p,) lies within O’. So,
though the fo @ converge to foQ, they must all leave
O’ before reaching their respective f(p,). Let f{g) be
any point of the null geodesic extension of fo -, We
claim f{g)e/)’. For suppose to the contrary that
fl@)e M~ /). Then, since f(g) is a convergence point
of {f°R2;}, ¢ must be a convergence point of {Q;}. This
is impossible since ¢ & 2,

In our construction we assumed that Q satisfied the
“not before p,” clause for an infinite subset of Q,;. Drop-
ping that assumption, we have the following conclusion.
If Q= and Q* are the respective lower and upper segments
of &, then either the future null geodesic extension of
foQ" or the past null geodesic extension of foQ* is a
future directed continuous causal curve segment through
f(p) lying within /)’. But this is true of all future
directed continuous null geodesic segments; Q was
chosen arbitrarily. Thus, since fis a bijection, it fol-
lows that there exist distinct future directed continuous
causal curves through f(p) lying within/)’. Their pre-
images under f~! must be distinet future directed con-
tinuous causal curves through p lying within/) . But this
contradicts our assumption that/) is achronal in O,

Thus, /) is empty, and, hence, /)’ is empty as well./
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A systematic approach to the study of nonlinear evolution equations based on the theory of the
equivalence transformations is suggested. In this paper it is applied to the Burgers and to the Korteweg—de
Vries equations. The main result is that the Hopf~Cole transformation for the Burgers equation and the
Miura, Bicklund, and Hirota transformations for the Korteweg—de Vries equation (together with the

linear equations of the inverse scattering theory) are all deduced from a single general equivalence

condition.

INTRODUCTION

The aim of this paper is to suggest a systematic
approach to the study of nonlineay evolution equations
based on the theory of the equivalence tvansformations.
This method, well known in the theory of classical
dynamical systems, ! seems not only conceptually sim-
ple but also effective in the applications, In this paper
it is applied, in particular, to the Burgers and to the
Korteweg—de Vries equation (hereafter abbreviated as
KdV equation),

In Sec. 1, we present an operafor formulation of the
theory of the equivalence transformations for evolution
equations. The use of the methods of the nonlinear func-
tional analysis allows one to unify all the equivalence
conditions for particular equations into the single
opevator equivalence condition (1,.6). This condition
holds both for linear and nonlinear equivalence trans-
formations and is the starting point of a systematic
analysis of these transformations, In particular, we
show how the equivalence transformations may be
used in the study of the symmetry transformations, of
the conservation laws, and of the initial value problem
for a given evolution equation, For the convenience of
the reader, the few notions of the nonlinear operator
theory which are needed in this section are summarized
in the Appendix.

Section 2 deals with the study of the equivalence
transformations of the Burgers equation (2,1), As the
simplest example, we find the well-known Hopf—~Cole
transformation which reduces the Burgers equation to
the linear diffusion equation. This result gives a new
interpretation of this transformation and displays the
constructive character of the procedure suggested in
Sec, 1.

In the following two sections we search for equiva-
lence transformations of the KdV equation (3, 1), This
approach, which differs from that followed in the
original papers, leads in a way which seems more sys-
tematic to the other equations (such as the modified
KdV equation and the linear equations of the inverse
scattering theory) usually associated with the KdV equa-
tion, As a particular example of equivalence transfor-
mation we obtain the so-called generalized Miura trans-
formation (3. 13).

In the last section, we show how the Bicklund trans-
formation for the KdV equation can be viewed from the

1405 Journal of Mathematical Physics, Vol. 18, No. 7, July 1977

standpoint of the equivalence transformations pre-
viously found.

The study of the conservation laws of the evolution
equations and of their link with symmetry transforma-
tions shall be dealt with in a subsequent paper.

1. THE METHOD OF THE EQUIVALENCE
TRANSFORMATIONS

In this section we formulate the theory of the equiva-
lence transformations for a system of nonlinear evolu-
tion equations like (A,B=1,2,...,n)

atuA(x’t):KA(uB,ujB’u?e,'°')a (1.1)
where the field functions u*(x, ) are supposed to be de-
fined, at any instant of time, in a fixed region Q of
R® and the subscripts denote the partial derivatives of
these functions with respect to the space coordinates

i
X

Dealing with evolution equations it is useful to con-
sider the time / as a parameter and to emphasize the
dependence of the field functions on the time. Conse-
quently, we shall simply denote by z(¢)) = (!(x,),...,
u"(x, t,)) the n-tuple of the field functions evaluated at
the time instant £;, regarded as functions of the space
coordinates only,

Now, in order to develop the theory of the equiva-
lence transformations from a general and unified stand-
point, we introduce the following opevator formulation,
We consider the linear function space U of the field
functions regarded as functions of the space coordinates
only. Any n-tuple u#(f;) will then be referred to as a
point of this space, and the function # =u(¢) will be re-
garded as defining a line in U (Fig. 1), The functions
k*(w®,ul,ub, - ) define a nonlinear formal differential
operator with domain and range in the space U, which
we shall denote by K, The given evolution equations may
then be synthesized into the single operator equation

du=K(u). (1.2)

This equation is called an abstract evolution equation,
Its solutions, if any, may be regarded as the field lines
of the abstract vector field defined by the operator K, ?
This geometric standpoint allows to introduce in a con-
ceptually simple way the notion of equivalence trans-
formations, as follows.
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A. Equivalent equations
Consider a second evolution equation

2.0 =H(v) 1.3)

defined on a second linear function space V and let F be
a generally nonlinear transformation which relates the
spaces U and V, We write

u=F(@) (1.4)

and we suppose that this transformation admits an in-
verse mapping and is Gateaux differentiable (see the
Appendix).

Equation (1. 3) is said to be equivalent to the given
Eq. (1.2) under the transformation (1. 4), if every solu-
tion v =v(t) of Eq, (1.3) is mapped into a solulion u=u(f)
of Eq. (1.2) (Fig. 1).°

B. Condition of equivalence

If the operator F does not depend explicitly on the
time ¢ (as we suppose henceforth, for simplicity), we
get

d4.4
du—-K) = 9,F@)~K(F@)),

(a4)

ZFlo0 - K(F)),

P FIHE) - K(F)), (1.5)

where F} is the linear Gateaux derivative of the operator
F. Hence in order that u = F(v) be a solution of the
evolution equation (1, 2) it must be

F;H@) - K(F@) =6y (1.6)

for every solution v of Eq. (1,3). Here 8, denotes the
null element of the space U, and we have used the
symbol £ to mean that the equality must hold only for
the solutions of Eq. (1,3). Obviously this condition is
sufficient as well, It is the operator equivalence condi-
tion we were looking for.

If we know both the evolution equations (1. 2) and (1. 3),
we can use this condition to verify if they are equivalent
under a mapping (1.4). On the other hand, if we know
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only the evolution equation (1.2), we can use this condi-
tion to produce both the equivalent equation (1.3) and the
equivalence transformation (1, 4), It suffices to look for
a pair of operators H:V—V and F:V~— U such that
condition (1, 8) be identically verified (the condition
being in this way a fortiori verified on the manifold of
the solutions). In the next three sections we shall give
examples of this procedure, considering in particular
the Burgers and the KdV equations.

C. Symmetry properties

Let us assume a symmetry transformation of Eq.
(1.3), i.e., a mapping S: V— V which maps solutions of
this equation once more into solutions.* Then, any
equivalence transformation F: V— U induces in a natural
way a symmetry mapping P: U — U of the given equation
(1.2), according to the scheme shown in Fig, 2. Name-
ly, a symmetry mapping of the given equation corre-
sponds to every symmetyvy mapping of the equivalent
equation, In Sec. 5 we obtain in this way the Bdcklund
transformation for the KdV equation.

D. Local conservation laws

We shall deal with the relation between the conserva-~
tion laws of two equivalent equations in a subsequent
paper. ? For completeness, here we limit ourselves to
stating the following result. Let us denote in operator
form,

(1m

a conserved density® for the given evolution equation

(1. 2). Then R(F()) is a conserved density for Eq. (1.3).
Namely, a conservvation law of the equivalent equation

is associated with evevy conservation law of lhe given
evolution equation,

R@)=p@®,uf,--+),

E. Initial value problem

The problem consists in finding the solution u =u (/)
corresponding to an initial condition u(0) =u;. If we
know an equivalent evolution equation which is simpler
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to solve than the given equation, we can think of solving
this problem according to the following scheme (see
Fig. 1):

1, to obtain the initial condition v, for the equivalent
equation, by means of the inverse equivalence
transformation;

2. to solve the initial value problein for the equiva-
lent equation;

3. to obtain the solution «#(¢) of the given initial value
problem, by means of the direct equivalence
transformation,

In this way we replace the study of the given equation
by the study of the pair of equations

Fw)=u, 38,0=H(@). (1.8)

In Sec. 4, looking for the simplest equivalent equa-
tions of the KdV equation, we are lead in this way to
the pair of linear equations of the inverse scattering
problem associated with this equation, 78

2. THE BURGERS EQUATION

As an introduction to the study of the KAV equation,
in this section we apply the method of the equivalence
transformations to the Burgers equation (Ref. 7, p. 96),

Ug T ur,~ au,, =0, 2.1)

The main result is that this method leads, in a very
natural way; to the well-known Hopf—Cole transforma-
tion (Ref. 7, p. 97), which allows us to linearize the
Burgers equation,

We look for operators H and F of the form
H@)=h(v,v,,v.),
F(H) :f(l"; Vs Uygs = ° )5

where k and f are two functions of »(x, /) and its space
derivatives which are to be determined so as to verify
the equivalence condition (1.6). The form of the operator
K,

(2.2)
2.3)

K@) = o, (au, - 5u%) 2.4)
suggests that we choose in particular a function f of the
kind

f(l!,ll,,v"’):axg(lr‘,’l'x,“"v)_ (2-5)

As a first attempt, we try a function g which depends
only on v,

Fw)=0,2{).
In this case, the condition of equivalence (1. 6) becomes
K(F(v)) - F/H{x)

=0oag" Wi+ ag' W~ 287 0)0% -

=0

(2. 6)

gl(v)h(v! ny X‘X)]
2.7

[where g'(v) is dg/dv). The simplest way of verifying
this condition is to choose

h(v! Uy ZJ“) =AUy (2, 8)
and g(») such that

ag”" ) - sg%@wy=0. (2.9)
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This condition yields
gv)=-2aln{v +A).
In this way we obtain the equivalence transformation

u=-—2ad 1n(w +A), (2.11)

(2.10)

It is the Hopf—Cole transformation. It reduces the
Burgers equation to the linear diffusion equation

Vy= AUy, (2.12)

a well-known result,

Then the Hopf—Cole transformation appears as a
particulay example of equivalence transformation of the
Burgers equation,

3. THE KORTEWEG-DE VRIES EQUATION

In the following two sections we study the equivalence
transformations of the K4V equation (Ref. 7, p. 577),

uy+aun, + =0, 3.1)

The main result is that in this way we are lead quite
directly to the other evolution equations which have been
related, in the original papers, to the KdV equation, i
In particular, in this section we find a three-parameter
family of equivalence transformations including as a
particular case the so-called generalized Miuva trans-
formation (Ref. 7, p. 600). They relate the KdV equa-
tion to a three-parameter family of equivalent equa-
tions, which includes as a particular case the modified
KdV equation. In the next section we shall obtain the
linear equations of the inverse scattering theory,

According to the method of the equivalence trans-
formations we look for operators H and F of the form

H)=h (L71)X’Zx11112x) 3.2)
F)=fv,v,), (3.3)
which verify the equivalence condition
FH() - K(F(v))
_of of (oh oh oh
+ —
~ v h( xxx) v (81' Uy aU, Vyx avrx XXx
oh of 3 3%
+ —a—v; vxxxx) + af(vz,'x)(ﬁ v+ a% U”) + (g‘é Ui
3 3 3f
+3 81?2 311 vivxx +3 v ov 21yx xx al 3 -—é
8'f Gl I
+ + ]
3 ov o, ) U"""(3 ov B, vyt 3 %%,L"* * av)
of
+v -
xXXxx% av,
=0, (3.4)

From it we can obtain a set of explicit conditions on the
unknown functions % and f as follows,

Firstly, we must impose that the coefficient of v,
vanishes, This condition yields

h(l}, x3 Vuxs vxxx) == (3.5)

Now, we insert this expression into (3. 4) and we im-
pose the condition that the coefficient of v,,, vanishes.
In this way we obtain the condition

vxscx + l(v’ v::! Z}SS)'
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A A N Y- S AN
<_ g0 * v, av“)+<3 v v, ¥ T35 ,v""+%)w0'
(3.6)

In order to keep the expression of h(vvw 2., ) as simple
as possible, we attempt a solution in the form

1=1(v,v,). 3.7)
Then the condition (3. 6) implies
fle,v)=Av, +B(@v), (3. 8)

Again, we insert this expression in the equivalence
condition (3. 4) and we impose the condition that the co-
efficient of v, vanishes. We obtain the condition

gl > d°B{v)

AE_'— +aA(Av, + B(v)) +3—=— ot Vx=0 (3.9
which yields
1 3 &*B\ ,
o, v)=- 2(aA o dvz)z‘x—aB(z/)z,x: (3.10)

Lastly, we insert this expression in (3. 4) and we im-
pose the conditions that the coefficients of v3, »2, and
v, separately vanish, These conditions yield

B)=-daAW?+Bv+C, (3.11)
or

BwY=D (3.12)
where A, B, C, and D are arbitrary constants,

In this way, we have obtained the following two
classes of equivalence transformations of the KdV
equation:

u=Av, - é‘(lAz‘l'Z +Br+C (3,13)
and
u=Aw,+D (3. 14)

corresponding to the choice (3.11) and (3,12),
respectively.

In (3.14) we used w instead of v in order to keep the
two classes quite distinct. The associated equivalent
equations are given by

Pyt Ve — = @AM+ aBov, +aCr, =0 (3.15)

and by

+§aAw§+aD1 = (3.186)

The transformation (3.13), with A=1and B=C=01is
the Miura transformation (Ref, 7, p. 599); with 4
=i¢/a and B=1, C=0 is the genevalized Miura trans-
formation (Ref, 7, p. 600), Then these transforma-
tions appear as particular examples of equivalence
transformations of the KdV equation, The transforma-
tion (3.13), with B=0, relates the KdV equation to the
so-called modified KdV equation,

L 4242,2 -
- gatAcvv, +aCo, =0,

Wy + Wy

vt+vrxx (3o 17)
This equation is then a particular example of an equiv-
alent equation to the KdV equation, It is of interest to
note that Miura found his transformation by noticing a

correspondence between the conservation laws of the
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KdV and of the modified KdV equations, rather than a
correspondence between their solutions (Ref. 6, p.
1207). The general relation between the conservation
laws of every pair of equivalent equations, illustrated
in Sec. 1, gives the reason for this fact,

4. THE MODIFIED KORTEWEG-DE VRIES
EQUATION

A way of pursuing the study of the equivalence trans-
formations is to search for highev-ovder transforma-
tions, i, e., for transformations which depend on high-
er-order derivatives than the first order, to which we
have restricted ourselves in the previous section, An
alternative (and more convenient) procedure is to search
for first-order transformations of the equivalent equa-~
tions already obtained. In fact, combining in sequence
two first-order transformations we obtain a second-
order transformation, and so forth,

According to this point of view, in this section we
study the first-order transformations of the modified
KdV equation (3,17). From them we shall deduce sec-
ond-order equivalence transformations of the KdV equa-
tion (see Fig. 3).

The modified KdV equation is characterized by the
nonlinear operator

AL
H@)= 18, <——é— v¥-aCv-v ) 4.1)

18

In analogy with the Burgers equation, we search for an
equivalence transformation of the kind

v=208,8W)=G{¥).
Let
atw = n(d)y ZJJ’;’ lfbxxy Zj)xxx) = N(KP)

4.2)

(4.3)
y’t*‘//xzx‘iww/lﬁ +

w{+w2”+21a4w£ =0 +aCy,c*o7AD(f)g/=O

N7 AR N
“—A’V’x 73 1}”4-0[—&‘(:#.27

\
QA 2
Uy +llogzx *AUUx =0 Vi * Va5V et
(k¥ equation) *aCth =0

(modified 40V equatior)
FIG. 3.
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mooified
KoV equation

kol equatior

be the corresponding equivalent equation. The equiva-
lence condition (1. 6) becomes

GyN(@) - H(G(@))
A N s
_ﬁ g ) wx
+ acg’wx + 3g"sz¢“ +g’¢xxx] = 0'
The simplest way of verifying this condition is to
choose g(¥) and (¢« - + ¥,,,) such that
a’A?
18

= ax[gl (Zp)n(d) e d)xxx) + <g”’ -

4. 4)

"

g%=0 4. 5)

and

g'(i/))[n(d) e wxxx) + Zj)xxx + aczpr] + 3g” (w)d)xz»bxx = D(t)

where D(#) is an arbitrary function of the time. The
first condition yields

(4. 6)

gW)=- ??7; Iny 4.7
and then, from (4. 6) we obtain
M) =3 aCy - DO (4.9

The transformation (4.7) is once more the Hopf—Cole
transformation. It is an equivalence transformation
also for the modified KdV equation, The associated
equivalent equation is

aA
zp,+1pm+acwx-3‘—”%"—" + 5 D=0, (4.9)

Combining in sequence the equivalence transforma-
tions # =F(v) and v =G(y) given by (3. 13) with B=0 and
by (4.2), we obtain

u=- §-‘(")"—"+C.
a

This is the second-order equivalence transformation
which directly relates the KAV equation to the equivalent
equation (4. 9).

(4.10)

For the convenience of the reader, we summed up the
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main classes of equivalence transformations of the Kdv
equation previously found in Fig. 3. In it we also sum-
marized the main equivalent equations which have been
related to this equation.

In Fig. 3 we have symbolically represented the mani-
fold of the solutions of the various equations as curved
surfaces in the corresponding linear function spaces.

Now, as we have seen in Sec. 1, we can replace the
study of the initial value problem for the KdV equation
by the study of the pair of equations formed by any
equivalence transformation and by the associated equiv-
alent equation. A comparison of the equivalence trans-
formations in Fig. 3 shows that it is convenient to
choose the pair of equations (4. 9) and (4. 10). In fact,
they also may be written in the form

wxx+%(u'_c)w:07 (4.11)
B+ b 5 0+ O+ 2 D00 =0 @.12)

In this way, we have replaced the study of the given
nonlinear evolution equation by the study of a pair of
linear equations in the new unknown function ), They
are the linear equations of the inverse scattering theory
(Ref. 7, p. 587; Ref, 8)

Thus, the theory of the equivalence transformations
seems to supply a svstematic procedure in the study of
nonlinear evolution equations,

5. THE BACKLUND TRANSFORMATION FOR THE
KdV EQUATION

In this section, from the study of the symmetries of
the equivalent equations previously found, we deduce
the Bicklund transformation for the KdV equation, !° This
example points out how Backlund transformations for
evolution equations can be viewed from the standpoint
of the theory of the equivalence transformations.

Following Chen, !! let us observe that the modified
KdV equation (3.17) manifestly admits the discrete
symmetry

Z:—‘UG (5. 1)

Then by means of the equivalence transformation (3. 13)
(with B =0), which relates the modified to the KdV
equation we at once obtain the following symmetry map-
ping # —u of the KdV equation:

aA?

U= AY,‘X - —6—112 +C,

(5.2)

2
u=-Av, - 2%112+C,

where v is any solution of the modified equation, Equa-
tions (5.2) may be regarded as the parametric equations
of the symmetry mapping, where the function v plays
the role of the parameter. This symmelry mapping is
the Bdcklund transformation fov the KdV equation.

(See Fig. 4.)

Now, by means of the other equivalence transforma-
tions previously found we can recast this Bicklund
transformation into different forms,
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7 7

7] z iﬂ s /

\\\ﬂ a=4vx—36i#’éc e/

KoV equation

moaified xo'V equatiorn
FIG. 5.

Firstly, we can work it out in the space W linked to
the original space U by the equivalence transformation

(5. 3)

U=—w,,

(See Fig, 5.) In this space the parametric equations
become

aA?
_urx:Avx— —6—112 +C,

(5.4)

— aA2 2
_“‘x:-’Az"x_ ‘6—1’ +C°

The usual form of the Bicklund transformation is then
obtained by eliminating the parameter v between these
parametric equations [observing that from (5.4) we get
24v =i - wl, 1!

Another form of the Bicklund transformation can be
obtained passing from the parameter v to the param-
eter ¥ according to the scheme shown in Fig. 6, In this
new parameter, the parametric equations become

Z'l:—§%+c’
(5. 5)
B 124
—p S EE 220
u ) az?' C.

The first parametric equation is exactly the linear
equation (4, 11) of the inverse scattering theory. This
fact points out clearly the strict connection between the
Bicklund transformation and the inverse scattering
theory,

Lastly, observe that from (5. 5) we get

— 12

U—u=— 0y In. (5.6)
Let us take, in particular, #=0 as the starting solution
of the KdV equation. Then the new solution # is given by

12

=3, 1y, (65.7)

This relation is just the transformation suggested by
Hirota, I This fact shows that the Hivota tranformation
is a particular case of the Bicklund transformation,

Thus, the theory of the equivalence transformations
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FIG. 6.

seems to supply a systematic procedure fo study the
symmelries of the nonlinear evolution equations,

CONCLUSION

The aim of this paper was to point out how the study
of the equivalence transformations may supply a unified
view in the theory of nonlinear evolution equations. The
study of the Burgers and of the KdV equations em-
phasizes the constructive character of this method. The
main result is that the transformations associated with
these equations can be all deduced from the single
operator equivalence condition (1. 6). The same proce-
dure can be followed also in the study of other evolution
equations (such as the nonlinear Schrddinger equation),
as we shall see in a subsequent paper,

APPENDIX

The main concept of nonlinear operator theory which
we need is the notion of the Gateaux derivative of an
operator F:V—U, It may be denoted by the symbol F/!3
and is defined by

d
Flo="7 F+c0)| o (A1)
If the operator F is of the form
F(U) :f(v’ Vg Vgyr* ** ) (A2)
we have
d
Flo= ;f(v +e@, Ve teds, ) enn
_ + of + o e A
T w0, T P (A3)
Then, we at once verify the relation
f of
=9 4+ Y RN
3, Fv) P v av,atv"
of of
S TR R
vt B, 80
=¥, (A4)

It also holds for operators F which are more general
than (A2).
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Inclusions of arbitrary shape in an elastic medium
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The problem of elasticity where a homogeneous linear solid of arbitrary shape and elastic constants is

embedded in an infinite homogeneous isotropic medium is discussed in a manner which is a straightforward
generalization of Eyges’ work on the Laplace equation. An exact integral equation is recast into an infinite
system of algebraic equations and a systematic scheme of approximation is obtained by truncation. The
lowest order approximation is discussed in detail, and its accuracy is shown to be quite good even for large
differences in moduli between the two phases. Application to the effective moduli of composite materials is

briefly discussed.

1. INTRODUCTION

In this paper we consider the problem of a homoge-
neous linear solid of arbitrary shape and arbitrary
elastic constants (phase 2, or the inclusion) embedded
in an infinite, homogeneous, isotropic medium (phase
1). In such a problem, one typically wishes to find the
strain in the inclusion in terms of the strain imposed
at infinity. An exact solution cannot be expected in
general, so the utility of any method must be measured
by the possibility of systematic approximations. The
usual approach of first finding the general solution in
each phase and then matching solutions at the boundary
results in a set of linear algebraic equations for the
coefficients in the general solutions. But where the
shape is complicated, the imposition of boundary condi-
tions becomes very difficult and it is not easy to formu-
late approximate boundary conditions either. Thus this
method does not naturally give rise to a practical
algorithm for obtaining approximate solutions.

This problem is treated here by an integral equa-
tion, ''? which will be derived in Sec. 2; here we only
wish to point out two important features. (1) The equa-
tion incorporates both the differential equation of elas-
ticity and the boundary conditions, so that the necessity
for matching solutions is obviated. (2) The integral
equation connects the strain in the inclusion directly to
the strain at infinity and does not involve the strain in
finite parts of phase 1. It is therefore tailored to the
problem at hand.

The advantage of the integral equation lies in the
possibility of systematic approximations, and it is the
main task of this paper to discuss these in detail, ina
manner which simply generalizes the work of Eyges on
the Laplace equation® and the Schroedinger eguation®
and that of Waterman on the Helmholtz equation.® The
main idea is quite simple: We expand the strain in the
inclusion in a complete set, for example, a Taylor
series, so that the integral equation becomes an infinite
set of linear algebraic equations for the expansion
coefficients, These equations are analogous to a similar
set for the coefficients in the general solutions in the
traditional approach, but is considerably simpler be-
cause only the strain inside the inclusion is involved.
Finite subsets of these equations obtained by truncation
can be solved, and taking larger subsets yields higher
orders of approximation.
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The lowest nontrivial order of approximation consists
of retaining only one term and one equation and physi-
cally corresponds to the approximation where the strain
inside the inclusion is regarded as uniform. This
approximation is discussed in detail in Sec. 3. It is
interesting to note that this approximation becomes
exact when the inclusion is an ellipsoid. In this case,
our result, of course, agrees with the classic work of
Eshelby® on ellipsoidal inclusion, but the method used
here is perhaps more accessible to those who are not
expert in elastic theory. More importantly, we provide
an approximate solution to nonellipsoidal inclusions.

As an illustration, the result for a cubical inclusion is
presented in Sec. 4. An important application of elastic
inclusion theory is the calculation of the effective moduli
of a composite material, and we present the result for

a dilute dispersion of randomly oriented cubical
inclusions.

It is, of course, important to know the form and size
of the correction to the lowest order approximation.
To this end, in Sec. 5 we present a simple higher-order
calculation, which indicates that higher-order approxi-
mations yield a continued fraction expansion and that
the error in the lowest order is small even for large
differences in moduli between the two phases.

2. THE INTEGRAL EQUATION

A numpber of methods have been used to derive inte-
gral equations for various physical systems (dielectric,?
guantum mechanical,® acoustic,® and elastic''?) involving
an inclusion embedded in a medium and governed by
second order differential equations. Primarily to
establish notations, we present a brief derivation for
the case of elasticity based on the Green’s function
technique, which should underline the unity in the
mathematical structure of all such systems.

Consider an infinite solid with a space-dependent
stiffness tensor c; ,,(X). Its energy density is
E@) =364 (X) D j20,(X) 2,20,(X), 1)
where u,(X) is the displacement field. Taking FEX)d3x
to be stationary gives the equation of static equilibrium

8lav[Cij,kz(x);?~uj(x)]:0, @)

1

Now suppose the solid to consist of an inclusion (phase
2) embedded in a medium (phase 1), both being homoge -
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neous, Then

1] kl(x)"cu - 334 Xe Vu! 0:1,2, (3)
and Eq. (2) can be written as
u $ei 7 iUy “ak{[c:j Y il t‘j,kl(x)laiuj} (4)
or, more compactly,
Dy u;(x) =3, PL(x), (5)

where P,, is the expression inside the curly brackets in
(4) and vanishes in phase 1. The operator D,; is
Dyy=ciiude (6)

If we define the Green’s function G,,, for the medium

by

DG ;) = 0, 6%(x), (1)
then Eq. (5) has the formal solution
w,(X)= (%) + [d°V G, (x - Y)[2, Pr(¥)], (8)

where u‘,’ is a homogeneous solution, Integrating by parts
and making use of the explicit form for P,,, we convert
(8) to”

#;(X) = u(X) +Acyy am fzday 256G (X =y} 3, 2,(y), 9)

where Ac;; pn=C{3)4m = Cii'em and the integral runs over
phase 2 only.

This is the starting point of our approximation scheme
to be discussed in the next sections., However, we have
yet to know the Green’s function G,,. To keep the prob-
lem tractable, we specialize to cases in which phase 1
is isotropic, characterized by the bulk and shear
moduli K, and G;:

Ct'll,)km:chilékm—‘_Gl(é 8, 96,9 5;'15

ik~ Im imYle T

(10)

km)‘

The Green's function can then be found from (7) by
standard Fourier transform technique, the result being
simply expressed as follows:

G,(x) == (1/8M[G;*(6,,92 - 3,3,)+M;*3,2,]Ix|, (11)

where M, =K, + 4G, is the longitudinal modulus,

We are now ready to identify the homogeneous term
uY(x). If we let |X| — =, then, from (11), G, (x-y)—~ 0
so that z,;(x) ~ «5(x), showing that »%(x) is the displace-
ment at infinity.

3. SYSTEMATIC APPROXIMATION

The greatest advantage of (9) is the possibility of
making systematic approximations. To proceed, we
expand the strain in the inclusion in a Taylor series
about the origin, which is chosen to be inside the
inclusion:

“f(x):,,z T

and similarly for #3(x).® We now derive a system of
linear algebraic equations for the coefficients u; byes byt
Differentiate (9) » times and evaluate the result at the
origin:

x (12)

Fuppeeepy oyt K

u —uf

Jobyoby T ®ip .,
=(~1)"Acy1 tm fdey[a °t apn 2:Gim(y) 2, ,(y)]. (13)
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On the right-hand side of (13), 3,,(y) can likewise be
expanded, so we get

0

Uj T UG by b,

Sibyeen,
=(=1) AC“'km; \1/3!)ij,bpl...p,,,ql...asu

Lieg...a40
(14)
where

Tim,kpl...p",ql...as

:fzdsy[akap‘ .yqs’g (15)

which only depends on the elastic constants of the
medium (phase 1) and the geometry of the inclusion,
but not on any strain in the problem.

' aPn Gim(y)]ya‘ v

If the system of equations (14) is truncated to a finite
number of equations involving an equal number of un-
knowns, then the coefficients «; , ..., can be solved in
terms of the strain at infinity. In fact the lowest order
truncation of (14) contains enough nontrivial and useful
features to warrant a detailed discussion. We take the
n=1 equation and on the right-hand side keep terms
only up to s =0, Then the following closed system of
equations is obtained:

Uy = U5 = =Bt pm Tim rp s 15 (16)
where from (15) *°
Timip= | AV3,2,G;p. (17
Using (11) for the Green’s function, we have
ij,kp: [G 15]"[ pkaq +M;1fjmkp]5 (18)

where the shape factors {,,,, depend only on the shape of
the inclusion and is totally symmetric and
dimensionless'’;

(1/47) [dVa;0,7,2,]x]. (19)

;mk»
In Appendix A we list the shape factors for spheroids,
cylinders, and oblongs.

If we first decompose u; ,
antisymmetric part a

into the strain u;, and the
ip?

uip:%("i,p +up,i), (20a)

(20b)

then (16) decouples into two sets. The six components
of strain can be solved from the algebraic equations

a;,=30u; , =1, ),

Ui~ U3 == BCi1 am Tim np 1> (21)
while a;, can be obtained from

By =55 == BCi; am Tim up 1 (22)
Here we have used the abbreviations

T:m kp—%(ij,kpiTpm,kj)' (23)

For inclusions with inversion symmetry the right-hand
side of (22) vanishes so that a;,=aj,

In general, Eq. (20) for the strain is only an approxi-
mation, based on regarding the strain in the inclusion
as uniform. It is known® that for ellipsoidal inclusions
the exact solution indeed yields a uniform strain. We
shall prove this from the integral equation in Appendix
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C. From the proof it will be seen that the possibility of
an exact solution for ellipsoidal inclusions in the case

of elasticity has the same geometric origin as the
possibility of an exact solution in the case of the Laplace
equation. ®

4. AN EXAMPLE: A CUBE

We illustrate this method by treating a cubical in-
clusion—probably the simplest geometry for which no
exact solution exists. For simplicity we take the cube
to be elastically isotropic with bulk and shear moduli
K,, G,, and choose the coordinate axes along the
principal directions of the cube. With shape factors
known (Appendix A), the solution of (21) for the strain
u;, is straightforward and results in

w0 (24)

um:l"fp,rS O

where the I''s are
Ty, =31 +¢,80G/G, ],
Ty oy =351 +¢,8G/G, " +3[1 +¢,0K/K |7,
Ty oo =51 +c,8G/G ] =51 +c,8K/K, |7, (25)

and the ¢’s depend only on the ratio of moduli in phase
1:
c,=(3a,K, +48,G,)/(3K, +4G)), (26)
where
a,=%-2/V37=0,30,
@, =V3/1=0.55,
@, =1.00,

B,=%-1/2y37=0.517,
B,=V3/4n +35=0.64,
B,=0.00.

Since K, and G, are positive, the ¢’'s lie between «; and
B;. For a typical ratio K,/G, ~2, all three ¢’s are close
to 0.5.%

Once we know the strain of a single inclusion, it is
straightforward to calculate the effective moduli K and
G of a dilute mixture containing a volume fraction f
{f<<1) of such inclusions with random orientation. For
inclusions of any shape the result can be written in the
form

K=K, +fAKS,,
27)
G=G, +fAGS;,

where the dimensionless parameters S,, S; depend on
shape. For randomly oriented cubical inclusions we
find

Sp=[1 +c,0K/K, " (cube), (28a)

Sp=E1 +¢,A6/G,|"t +&[1 +¢,AG/G,] (cube)., (28b)

It is interesting to compare with the well-known result
for spherical inclusions [which can be readily obtained
from {21) by using the values in Appendix A]. For
spheres, S, is exactly the same as (28a), while S; is
given by

Se=[1 +¢c,8G/G,]™* (sphere), (29)

where c, is again of the form (26), with

s

» Ba=

0

Q,=
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Since c, is again close to 0.5, there is actuallv very
little difference between (28b) and (29), i.e., between
cubical and spherical inclusions.

In this section, the cube is chosen merely for its
simplicity. The main point is that the strain in an in-
clusion and the resultant effective moduli of dilute
mixtures can now be extended (approximately) to non-
ellipsoidal inclusions. Previous work on effective
moduli, except for certain bounds'*~'® have been limited
chiefly to spheres and spheroids. *®''” The present meth-
od opens the way to a more general discussion. One
situation involving nonellipsoidal inclusions in the case
of semicrystalline polymers,'® in which the crystalline
regions (phase 2) form lamellae which are probably best
described as thin discs,

1t is, of course, essential to know the accuracy of the
lowest order approximation used in this section. To
this end we discuss in the next section an example to
next nontrivial order. The result of the calculation will
then give a good idea of the size of the error expected
in the lowest order.

5. HIGHER ORDER CALCULATION:
AN EXAMPLE

In this section we show how the calculation can be
carried to higher order. Such a calculation illustrates
the completeness of the method —how increasing accu-
racy can in principle be obtained, and more importantly
gives the form of the higher order corrections and hence
an estimate of the accuracy of the lowest order approxi-
mation. Since higher order calculations are bound to
proliferate indices, we continue with the example of a
unit cube and for simplicity consider a purely hydro-
static strain at infinity

o, = U, (30)

and calculate only to second order in the strain, i.e.,
up to u; , ., . (First order is trivial on account of
reflection symmetry.) By symmetry, there are only
three independent nonzero coefficients to this order.

A=u,,, B=u C=u (31)

X, XXX X, Xyy*©

We take only the n=1 and »=3 equations in (14), and
keep terms only up to s =2 on the right, thus yielding
three equations for A, B and C. The n=1 equation
gives, after some simplification,

[1+8KT;, ,]A +(AG/3)T; B +{AG/3)

inyin,nn
X[2T5, i —ST;nvl'n,nn]C =U.

(32)

The T’s are defined by (15), repeated indices are
summed as usual and we have adopted the convention
that an index appearing four times is to be successively
set equal to 1, 2, 3 (corresponding to the principal
directions) and then summed, i.e.,

T

. . .
invinan = Lin, i, T The, j2.20 ¥ Ts, 3,58

The n=3 case gives two independent equations

B+2C =0, (33)

{6 +AG[T;i,innn,jj +2T:i,jnnn,ij _5T:|m,mnrm,mml}c
:SAT;n,kmmA’ (34)
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where in (34) we have already used (33) to eliminate B.
Equation (33) is independent of the shape, and is in

fact a consequence of the differential equation alone, as
can be directly verified. All the T’s can be evaluated
analytically (Appendix B); putting these into (32)—(34),
we finally obtain

AK 0.11AK 8G/M? -t
A= U{l * 31 " T5a6(0.72/M, 70,3576 ° ¥
N AK (0.72 0.25) -
= -5 = e 1 _t .
C=-%B=0.74 Ml{ +AG 78 i) A (35b)

In contrast, the lowest order approximation gives

A=U{l +2K/M}*, (36)

with no information on B and C.

This suggests that the present method gives a com-
tinued fraction expansion. Take, for example, (in
arbitrary units)

Gl:1’ K1:2, G2:5, KZ:IO,

then the lowest order approximation (36) gives A
=0,294 U while the next nontrivial order (352) gives

A =0.304U, only showing a 3% difference., Thus even
for one phase much stiffer than the other (K,/K,=5 in
this example), the lowest order approximation is quite
accurate. Indeed it can be seen that (35a) and (36)
never differ by more than 10% for all values of AK and
AG. In contrast, low order “Born approximation, ”
i.e., the first few terms of the Neumann series solution
to {9), is unlikely to be accurate except for small
AK/K,, AG/G,.

6. CONCLUSION

We conclude by recalling the limitations of this meth-
od. First, the discussion is confined to linear solids,
so that large deformations cannot be treated. Secondly
the medium (phase 1) has to be isotropic, for otherwise
the Green’s function G; is unknown. We emphasize,
however, that an anisotropic inclusion (phase 2) pre-
sents no problem except that of greater complexity in
the algebra.

Higher-order calculations are possible in principle
but are likely to be cumbersome, on account of the
intrinsic complexity of elasticity. The lowest-order
approximation is, however, sufficiently accurate to be
practically useful, for example, in studying the effec-
tive moduli of composite materials.

It is also to be stressed that the only mathematical
tools used in this study are “standard” ones, i.e., the
same ones that are encountered in treating the more
familiar equations of mathematical physics. 3~® The
tools, and indeed the language, specific to elastic theory
{(e.g., biharmonic functions, “cuts” and “traction”)
which are perhaps not familiar to all physicists have
been completely avoided.

APPENDIX A

The shape factors ¢,,,; are defined by
Lim=(1/4m) [dVa,a,5,8,|x]|. (A1)
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Spheroid

For a spheroid with principal axes a, a, b, and the
b axis along #, the shape factor is

b =00y, 0,, +0,, 6, +8,,0,)
+B{6; mym, + O mym, + 0, mm,
+Onny + 8, mm, + 0;6m ;)
Tynn g, (A2)

where

a=—-1+301 =) +58 +#°)L,
B=1 +3(1 - k%) - 5(5 —#*)L,
y=-3-801 <) +8(7-39L,
P==r*=1~-d"/b%,

and
1—k2(11n1+k
—— (57 InT—

I- k 2k 1~k

2
IZ;K (%tan"x—l +§Kz) )

-1 —ék2> s b=a (prolate),

b<a (oblate).

For a sphere (k=0) it reduces to
tum: - 12—5(611' Oe1 +6(k 61‘: +5n 6]”2)
while for an extremely oblate spheroid (¢ — +)

tym=—2nmmn,.

Cylinder

For a right circular cylinder of radius R and length
2/, with cylinder axis along #, the shape factor is again
given by (A2), where now

a=-3{t+£%), B=-3(3¢-5¢),
y==2+30£-78), £=1/(°+R*)2,

Oblong

For a oblong with edges ai, bj, ck, there are only two
independent shape factors:

4.  cb | 2abe a®+A?
= —— o, 249
tun 7 tan ah + 7 A AT S

2 abc
e = T @59

where A =(a® +b®+c?)'/2, All other components can be
obtained by permutation. For a cube, these reduce to

-1
fuzz:m" M

2
L= =3

2
4 —_
NET N

A useful check on these results is given by the identi-
ty V2V?(x| =—-876%(x), which implies ¢,,,,=~2. Since
long rods/flat disks can be regarded as the limit of
spheroids, cylinders, or oblongs, consistency in these
limits provides another check.

APPENDIX B

Here we list the T’s for a cube (Ixl, !y, 1zl <1)
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that occur in Eqs. (32)—(34):
T;k’jk:I/Ml,

inimn=—(/M)[(6/7) In(2 +V3) 2] = - 0.515/M,,
Thy o= —(1/M)(6/mM1n(2 +V3) —1]=-1.515/M,,
T';i,innn,jj:(I/Ml)[l‘l\/?/n—zlzs. 72/M1,

Ty junn, i =(12 =123 /7)/M, +(20+3/7 ~8)/G,
—5.38/M, +3.03/G,,

Tr:m,m*mn,mm:(—10\/?/377+6)/M1 +(10\/'3_/7T—4)/G1
=4.16/M, +1.51/G,,

T;n,krmn - (8\[§/3 77)/1’”1 = 1' 47/1)\41

APPENDIX C

Here we prove that (16) is exact for an ellipsoidal
inclusion. The approximation of uniform strain would be
exact if, upon substituting a constant for 3,u,(y) into the
right-hand side of (9), the resultant integral is linear
in %, for after solving (16) we would then have satisfied
(9) exactly. So we require [d°v3,G,,(X ~y) to be linear
in v, that is,

JdPvag - op, 8,G,,(y)=0, n>2,

Since G,-m(Y) is linearly related to second derivatives of
lyl (v) by (11), it is sufficient if

der?ml-'-aaNr:O, N=n+3>5, (C1)

For an ellipsoid centered at the origin, it is only neces-
sary to consider even N, say N=2L, L= 3,

First consider a sphere, Symmetry considerations
dictate that (C1) must have the form

[dva, »o d,r =Ay[0y o Oapa, 4 ], (C2)

where [ | contains all possible contraction of a, -+ a
in pairs. Summing over each pair of indices «o,a,, as;,,
etc., gives

‘f'd V(v)tr = A, X positive constant. (C3)

Since V*V2» = —878*(r) and here L > 3, the integrand in
(C3) is the derivative of a delta function, which, upon
conversion to a surface integral, proves A, =0 and
hence (C1).

Next consider a spheroid symmetric about the z axis.,
A general ellipsoid can be treated in exactly the same
way. Since (C1) has already been proved for any sphere,
it suffices to integrate over the spheroid minus a small
sphere of radius €. So (C1) is
J oava, - v

roe
= [da

f‘R(Q)

€

drria, <24, 7, (C4)

“N
where R(Q) is the polar representation of the surface,
in the case of a spheroid given by

(C5)

1 1 1
R(Q)'2 = ? +<? - ;2'> cos’o,
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The integrand (3, --:9, 7)is dimensionally »'*¥ and
. 21 N o .
is totally symmetric among its indices. Again from
viviy =~ 876%(r) we see that the tensor vanishes upon
summation over any two or more pairs of indices, since
the volume of integration excludes the origin. Hence the
tensor is a linear combination of terms with angular
momentum /=Nand /=N-2, i.e.,’®

(g, 2, 7= ,J-N{Z anYy o) +2 b, YN_Z,,,,(Q)} ,
(C6)

where the dependence of q,,, b, On o, --a, is sup-
pressed. Inserting (C6) into (C4) and doing the radial
integral gives

/dV(aal e aaNr):fdQ 4—_1? [R(Q)*Y — V]
x{%} anYy Q) +; meN_zym(Q)} .

The term involving € clearly vanishes, while from (C5)
we see that R(2)*" is a polynomial of degree N—4 in
cos© and hence has zero projection on Yy ,, and Vy_, .
This completes the proof of (C1) for spheroids. The
proof relies on the fact that for ellipsoids R(£2)? con-
tains only up to /=2 terms, and it is therefore clear
that uniform strain cannot be expected to hold for shapes
other than ellipsoids.

A similar result for the Laplace equation has been
given by Eyges.?

IR.J. Knops, Proc. Edin, Math, Soc. 14, 61 (1964).
2v.D. Kupradze, Prog. Solid Mech. 3, 1 (1963),
31. Eyges, Ann. Phys. (N.Y.) 90, 266 (1975).

‘1. Eyges, Ann. Phys, (N,Y.) 81, 567 (1973).
5P,C. Waterman, J. Acoust. Soc. Am. 45, 1417 (1969).
67.D. Eshelby, Proc. Roy. Soc. A 241, 376 (1957); Prog.
Solid Mech, 2, 88 (1961),
78k operating on a function of x ~y shall always mean 3/8y,.
8u3 will only contain terms up to n=1 if, as is usually the
case, the strain at infinity is constant.

‘Repeated integration by parts show that there is no problem
at the origin.

10From now on, all integrals will be understood to be over
phase 2 only.

Upower counting may suggest a logarithmic divergence at the
origin, but actually no such divergence occurs because the
volume integral can be converted to a surface integral.

2A value of ¢, =0 would mean u;,=u},;, corresponding to a
“parallel” arrangement of the two phases, while ¢;=1 means
Gyuyp=Gyudy, i.e., equality of stresses, corresponding to a
“series” arrangement. The fact that ¢; ~4 can be heuristically
interpreted as saying that the actual situation is midway be-
tween the two.

137, Hashin, J. Appl. Mech, 29, 143 (1962).

147, Hashin and J. Shtrikman, J. Mech. Phys. Solids 11, 127
(1963).

15R, Hills, J. Mech. Phys. Solids 11, 357 (1963).

167,,J. Walpole, J. Mech. Phys. Solids 14, 151 (1966).

1TR. Roscoe, Rheol. Acta 12, 404 (1973).

18R, Gray and N. McCrum, J. Polym, Sci. A-2 7, 1329
(1969).

13Equation (C7) holds only when put under the integral in (C4).
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Geometrization of configuration space
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Projective geometry provides the means to geometrize configuration space, granted three elementary
postulates: (1) It is possible to describe physical systems as collections of a countable number n of particles;
(2) the mass-inertial tensor of such a system is positive definite; (3) the Galilei group acting on elastic
bodies can be rationally extended to the whole of GL(4, R). From these it is possible to deduce that any of
the three symmetric spaces O(4, n)/0(4) X O(n), U2, n)/U(2) X U(n), and Sp(l, n)/Sp(1) X Sp(n) represents
the configuration space. These three spaces are Einstein manifolds of constant sectional curvature. Several
geometrical theorems are given for all three spaces; the metric on each is given in both Cartesian and polar
forms; infinitesimal generators of the Lie algebras so{4,n), su(2,n), and sp(1)Xsp(#n) are also obtained.
Physical quantities are presumed to be obtained from eigenfunctions of the Laplace-Beltrami operator on
the three spaces, and partial solutions for such functions are obtained on Sp(l,n)/Sp(1)XSp(n). These
solutions fall into two classes: Those with integral values of a quantum number !> 0 form the sequence
2(1+1)% those with half-integral !> 1/2 form a series with (21+1)(I+3/2) members, and possibly

represent leptons, quarks, etc.

I. INTRODUCTION

That physical space is non-Euclidean is generally
accepted. Locally, the geometry of space has long been
taken to be that of the Euclidean space E3; but over
large distances the Riemannian curvature is nonzero.

It is here suggested that it might be of benefit to pre-
sume that space is locally projectively flat (P%). By in-
vestigating the group of automorphisms acting on the
configuration space of x particles imbedded in P3, it is
possible to discover that the global nature of such a
space is hyperbolic.

There are several interesting analogies between pro-
jective geometry and the physical world. For example,
the plane-point duality’ of P° is analogous to wave-
particle duality. Furthermore, P® is not simply con-
nected, and in consequence half-integral spin is compre-
hensible. In essense, the step from E® to P* admits of
transformations to and from infinity. In classical terms,
such transformations are capable of creating and annij-
hilating charge and mass in exchange for the potential
at infinity. This paper does not purport to calculate
charge or mass; it contains only the basic formulation
of the projective geometry of » particle systems.

The geometry of the configuration space of an n-
particle system may be deduced from consideration of
the group of automorphisms acting on the space in such
a way as to preserve the positive definite character of
the mass-inertial tensor of the system. Let particle i,
1<i<#n, considered to be a point with mass »;, be
located in flat Euclidian space at y¢, 1< a< 3. The

matrices M'/2=diag(m}’% mi/? ... m.’? and
1 1
v i Y
yi % Vi
Y= 4 3 3
y1 vz Yn
11 ... 1

yield the mass-inertial tensor T on construction of 7
=XX', where X =YM'/? and where X’ is the transpose
of X. The tensor 7 has components
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Tmayi Tmyivi Tmaynd Smad
Tmaytyi Tmohi Ymol
sym il Tl

Y m;

and is symmetric. The matrix X may be interpreted as
an indefinite Grassmann manifold® (as will be seen
later); the coordinates (m}/%y}, m}/%y2%, mt /%3, mi/?)

= (x4, ¥, »%, x) are homogeneous coordinates! of the pro-
jective space P®. The later observation stems from the
fact that ¥¢ =x§ /x. The points y; of P® may be con-
sidered to be the rays of 7}, the vector space x; of four
dimensions. The homogeneous coordinates x; are de-
fined by the y§ only to within a constant of proportional-
ity, at least insofar as the intrinsic geometry of the
manifold is concerned.

Suppose that T is brought to diagonal form by the
Galilean transformation (supposing time to be an im-
plicit variable)

R" 0

Rt I v I 0

01

Il

vy om T | 0 m
Yo

where Rc S0O(3), 2/ is a translation vector, I*® =3 m vivi,
m=3m;, and v§ =% m;v5. (The choice / = - m Ry, ac-
complishes the task.) The fundamental assertion that

the matrix T is positive definite and hence bounded from
below is equivalent to saying that systems cannot vanish
from the world and that masses are nonnegative. Let

the lower bound be a?1,, where a is any number less

than the minimum eigenvalue of XX’, so that

XX'>a%,,

atXX'at ~1,>0. (1. 1a)
(The matrix equation 4 >0 will mean that 4 is positive
definite; A <0 signifies that A is negative definite. )
Since the coordinates y¢ are unaffected by a'lX—»X, Eq.

(I. 1a) is geometrically equivalent to
XX'-1>0 (I. 1b}
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Where there is no chance for confusion, the order of
the identity will henceforth be suppressed.

Those transformations, considered as a subgroup of
GL(4, R}, which leave infinity fixed, i.e., do not move
the hyperplane x} =0, include the Galilei translations
and rotations as well as the discrete crystallographic
groups. In addition, arbitrary homogeneous states of
strain may be induced in the system if we allow all 12
parameters of

R,SR, ¢
0 1

to be arbitrary. Here the R; are rotation matrices
(3 + 3 parameters), S is a diagonal deformation gradient
matrix (3 parameters) and ¢ is a translation vector (3
parameters). (This group will be called the extended
Galilei group.) To get all of GL(4, R), which is the group
of automorphisms of P%, we need to include the subgroup
of matrices of the form

1 0

14 y

v oa

which are not traditionally considered in the mechanics
of either rigid or elastic bodies.

Consider first the action of the extended Galilei group
on T, as given by

RSBy tf | I

0o 1

R{S'R; 0 I 3
vo m | | 1 Yo
The action is such as to leave the mass invariant, m
=m, while the distribution of points is compressed or
dilated, rotated, and translated. In terms of the indivi-
dual y§ =x% /x4, the transformation gives 7% = (R,SR,)5}
+*.

The remainder of GL(4, R) consists of scalar dila-
tions of the mass, which maps v~ a'ly‘}‘ corresponding
to a change of scale, as well as of those with matrices

1 0

¥ 1

3

whose action is to be investigated. Suppose that T has
been brought to the diagonal form

I 0
0 m

by the action of the Galilei group. Now apply the
transformation

I 0 1 7 1 Iy

- ’

v'I m+7rIr

1 0
» 1110 m| |01

which increases the mass of the system, and translates
it as well, The translation could now be undone by a
Galilei translation which does not affect the mass.
Hence, the action of this part of GL(4, R) corresponds
to an increase of energy (on use of relativistic mass—
energy equivalence). Suppose now that T is not diagonal,
and choose 7=~ I"y,. Then
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1 0
..y(')['l 1

I

vo m{{0o 1

1 —Iy| |1 0

0 m—yityy

The scalar of energy may thus be diminished by such a
transformation.

Altogether, a matrix g ¢ GL(4, R) acting on T accord-
ing to g T(g™?)’ translates, rotates, deforms isotropical-
ly and/or anisotropically, and either increases or de-
creases the energy of the system of particles. This
group of automorphisms thus extends the classical me-
chanics of rigid and elastic bodies to encompass the
effect of heat exchange in a geometrical way. This is
indeed peculiar to projective geometry. The physical
consequences of these transformations may be under-
stood on closer inspection.

The action of the part of GL(4, R) considered above is
such as to (possibly) map some particles to infinity,
while other particles are (possibly) mapped from infinity
to the finite domain. Consider

1 0

r' 1 S |

4
iV

where x%y, is the three-dimensional part of x;. The co-
ordinates y; are mapped to

}_'i:.'vi/(l_*'yl.\'i)

by such a transformation. It is apparent from this equa-
tion that points on the plane »'y =0 are invariant points,
points on the plane 'y =- 1 are sent to infinity, and
points at infinity are sent to »/(+'7) (as can be seen from
the inverse transformation).

Particles with ¥4 =0 are massless, and so the points
at infinity may well represent photons. Hence, the
matrix X is constituted of the homogeneous coordinates
of both matter and the electromagnetic field. Projective
duality1 on P? asserts that points and planes are equiva-
lent, which suggests that wave-particle duality is nothing
other than the projective duality of P®. Matter can be
created or annihilated by mappings with points at in-
finity, alias photons.

In summary, the import of these considerations is
very simple: The “world” composed of # particles (pho-
tons included) is taken to be locally projectively flat
rather than locally Euclidean flat. The difference be-
tween projective and affine geometry is that mappings
to and from infinity are allowed in the former. Such
mappings may correspond to emission and absorption
of radiation.

i11. REAL PROJECTIVITIES OF CONFIGURATION
SPACE

Let g = (C%) € GL(4, R). The action of g on v; is
given by linear fractional transformations

V3= (Cy +CY/(Chy +C),

o

which constitute all projectivities of P®, The matrix
XX" -1 is taken to

XX'-1=gMXX' - 1)g'* >0
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since (g'g)™ is positive definite. We now wish to obtain
the projectivity X - X. First note that

P(XX' - 1)P’ =PXQ'QX'P' - 1=X,X{ -1,

where X; =PXQ', P<0(4), and @ € O(n), gives an equi-
valence class. That is, all matrices PXQ', with P and
@ orthogonal and of rank 4 and » respectively, are equi-
valent to X that they are characterized as belonging to
the same equivalence class of mass-inertial tensors T.
This suggests that the space X will be a coset space

G/0(4) X O(n), * and indeed this is what will now be shown.

The transformation

XX - 1=g1(xXX - 1)g'" (I. 1)
induces
X=G6(x),

and the nature of G(X) is to be determined. From the
form of Eq. (II. 1) it is clear that one may take

X-:g’llz,
where g=g(X) and h =h(X). Then
hh' -gg’ =XX"~1. (I11. 2)
Let
h=ho+Xhy+ haXhy X s+ - -
and
g=8+ e Xg + & XaX g5+ 0

on multiplying the two series in the manner indicated
in Eq. (II. 2) one finds that
hohg ~ guo==1y Mm=g=1,,
haho=8220 hofts=8&uSs (1. 3)
hohy = 8387 =1,
and that all other %; and g; must vanish. Hence, the
linear fractional transformation is
X=(XB' +AN*xD +C), (IL. 4a)

where A'=g,, B =g, D’'=h,, and C’'=h, These
matrices constitute the group O(4, %), as can be seen
from Eq. (II. 3). That is,

Al C’ 1, O A Bl I, 0
B" D’ 0 -1,1|C D 0 -1,
giving

A'A=C'C=gygi-hohy=1,,
A'B_C'D=ggs— hoh; =0,
B'A-D’'C=g,g)-hyhj=0,
B'B-D'D=gyg; - hyhy=~1,
on comparison with Eqs. (II. 3). Let
ro |4 Bl g b O
c D 0 -1,
so that
LrHRlr =Hp. (I1. 5a)

We also have
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TRHI' =Hpg. (I1. 5b)

Furthermore,
X=(AX+B)(CX+D)'=(XB' +A)YXD' +C'), (I 4b)
from which all invariants may be constructed.

We may now return to the transformation equation
(I1.1) to find

XX'-1=(XB'+A)(XD' +CYDX'+C)
—(XB' +A)(BX'+A)|(BX' + A)!
=(XB'+ A (XX - 1)(BX' +A")*
on use of Eqs. (II.5).

The whole of the space X splits into separable do-
mains under the action of these transformations. Points
X in the domain XX’ - 1> 0 remain in this domain,
points on the boundary XX’ - 1=0 stay on the boundary,
and points in the Cartan domain XX’ ~ 1< 0 map into
the same domain. (The word point is here understood
to mean a point in configuration space.)

The space XX’ - 1>0 is a symmetric space, as will
now be shown. A symmetric space is defined as one
for which every point is an isolated fixed point of an
involution.® An involution is one for which

HpUpHp =Tp, (11. 6)

or A'=A, D'=D, -C’'=B. The solution of
X={AX+B)(-B'X+D)?=(XB' +A)*(XD - B)

gives the fixed point X =~ (A -~ 1)"'B. This point lies in
the domain XX’ - 1=(A-1*[BB -4 -1)A-1"
=2(A-1)">0 provided A > 0. The positive definite
character of (4 — 1) results from A2- BB =1; A-1
is positive definite if A is, since BB' is positive de-
finite (except on subspaces of lower dimension). Owing
to the equivalence relation X ~P'XQ, the symmetric
space may be identified with one of the connected com-
ponents of the homogeneous and symmetric spaces
0(4, n)/0(4) X O(n), However, we will not make explicit
use of the theory?*'® of symmetric spaces here.

I111. COMPLEX AND QUATERNION SPACES

That the homogeneous coordinates of a point are even
in number permits of a representation of the configura-
tion space by complex matrices. That they are four in
number further allows a representation in terms of
quaternions. Since much of the development of the
geometries over the real, complex, and quaternion
fields is formally the same, the basis for these alter-
native representations will now be presented, beginning
with the complex.

Define the 2Xn complex matrix Z, with elements

; 14 .2
Zi | | xi+ixy

- ’

3 40t
x5 +ix5

L CRENE

z

Then ZZ*, where Z* is the complex conjugate of the
transpose of Z(Z* =2’), is bounded from below if XX’
is. Hence, we may set

ZZ*-1,>0 (111 1)
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to define the geometry of physically accessible space.
The group I', consisting of matrices

A B

.= ) (II1. 2a)
CD
satisfying
[ H,T*=H, (I11. 2b)
and
I*H,T,=H, (IIL. 2¢)
where
H,= L, 0 (111. 2d)
o -1,

is the group U(2, n) and acts upon Z according to
Z,=(AZ + B)(CZ + D) = (ZB* + A¥)(ZD* + C*),
(111. 3)

as can be shown with the procedure used to obtain Eq.
(II. 4b). The space ZZ* — 1> 0 may be identified with
the coset space U(2, n)/U(2) X Uln).

The space composed of » quaternions is represented
by 2X2n matrices @. Let the elements of @ be the 2xX2
quaternions g;, with

1 2

23 25
q;= i J
-7 7}

or
4

o

q; =21 0u%5.
[

The o, are defined’ by

10 i 0
01 = y U= ’
01 0 -4
01 (UM
O3 = y Og= s
-10 i0

the latter three of which are equivalent to Pauli spin
matrices. The quaternion conjugate to

4
q; =05 + 2 0u x5
o =2
is
R Y
q; = 01X} _ZJ OaXj,
@ =2
and it is easily seen that g; =¢}. Thus
x 4 n
QQ* =1 q,q% :[E 2 (X‘,’-)z] 1,> a?l,
i=l a=]l §=1
or, since the projective geometry is invariant to g;
- aq;,
QQ*-1,>0
is the space of interest. Apply now a permutation to
bring @ to the form

(111. 4)

2t 2

-—ZZ 21 3
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where 2% is the ath row of Z and is a 1X#n vector with
complex entries. Define the matrix

0 1,
I=l_1 o (I11. 5)
and note that
R*=J.Q'J;, Q=4QJ;, (111. 6)

which will be used shortly.

Use of the Eq. (III. 4) alone gives the group of auto-
morphisms

TLHIT =H,, (I11. 7a)
F:Hara = Hq!
with
H=| © (111. 7b)
LO - 1271
and where
B
r,= 4 ’
LC D

which acts upon @ by means of linear fractional
transformations

Q1 =(AQ +B)(CQ + D)™ =(@B* + A*)™(QD* +C*).
(UL 8)
However, the structure of 1, is not as simple as Egs.
(II1. 7) suggest owing to Eq. (III.6). Use of Eq. (III.6)
in conjunction with Eq. (II1.8) gives J;AJ; =A, J;BJ,
=B, J,CJ{=C, and J,DJ,=D, so that I', is the sym-
plectic group Sp(1, n) satisfying

I Ky, TF=TF¢K T, =Ki,n (111. 9a)
where
-1.0 0 0
Bzl o 1,0 0 (111. 9b)
0 0~-10
0 0 01,
and where I' has the structure
(11 B, ay
r-| & le Ce (111. 9¢)
-a, —B, a
-C, -0, G

Here a; is a complex number, B; is a 1Xn complex
vector, and D; is an # Xn complex matrix. The space
QQ* ~ 1~ 0 may be identified®® with Sp(1, #)/Sp(1)
x8p(n); it is called the quaternion hyperbolic space.

The three different spaces are homeomorphic to one
another, since there are obviously unique mappings with
unique inverses that take one space into another. Hence,
the spaces are topologically equivalent. However, the
groups of automorphisms for large n are quite different,
there being more parameters in Sp(1, #) than in U(2, n)
and more in U(2, n) than in O(4, ) [(n + 1)(2n+3), (n+2)%,
and (n+4)(n +3)/2 real parameters respectively®].
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For small n there are some special isomorphisms, 3
e.g., su(2,2) =so(2, 4) between Lie algebras, that may
be especially interesting. Some of these are given in
Appendix A. However, in these cases the literal inter-
pretation of homogeneous coordinates demands that the
dimensionality of the projective space be one less than
the number of particles. Thus, a system consisting of
but one particle has no dimensions; a space consisting
of two particles has one dimension (the distance be-
tween them), and such a space could be represented
with homogeneous coordinates as O(2, 2)/0(2) X0O(2), as
U(1, 2)/U(1) X U(2), or as Sp(1,1)/Sp(1) XSp(1); a space
of three particles defines a plane, and the only permis-
sible representation is O(3, 3)/0(3) X O(3). It is only
when there are four or more particles that three-
dimensional space takes form. [Of course, there is
nothing to prevent academic consideration of spaces
such as O(2, n),/0(2) XO{n) and O(3, n)/0(3) X O(n) where
all particles are constrained to lie on a line or a plane
respectively. ] Hence, the groups that have been of re-
cent importance in particle physics, % e.g., SO(4, 2)
and SU(6), could be considered to be approximate sym-
metries and/or subgroups of O(4, »), U(2,n), or Sp(1, )
as appropriate. These dimensional approximations not-
withstanding, it will later be shown useful to consider
P? spaces containing fewer than four particles so as to
interpret the theory.

Since the three spaces considered are substantially
different from one another, it seems that one should be
able to make a definite statement as to which is the best
representation for a system. However, each space has
properties which recommend it over others depending
on the point of view. For example, crystalline solids
may well be best represented by 04, n)/0(4) XO(n) since
the structure of the crystallographic groups are ap-
parent in this case. On the other hand, the success of
SU(2), SU(2)xU(1), SU(3), and SU(6) in particle physics
suggests the importance of U(2, #)/U(2) X U(n). Finally,
the particles comprising Sp(1, »)/Sp(1) XSp(n) may be
moved independently of one another while the origin of
@ is fixed (as can be seen from the first version of @,
upon which the subgroup Sp(1) XSp(1) x- - -x8p(1), n
factors, acts on the right}, and so this space seems to
permit of a greater variety of configurations than do
the real and complex spaces. Perhaps different systems
can be metrically different from one another even
though they are topologically identical. However, this
problem remains to be resolved.

In the following the differentials dX, dZ, and dQ will
be encountered, and these matrices will consist of 4n
infinitesimals. There are two ways to interpret this
operation. We might first assert that the fourth row of
X contains hidden variables, so that dm!/? is in fact
d(m}’?%y%). Thus, the operator d corresponds to an in-
finitesimal change of configuration as observed from
a fixed frame. Alternatively, one may consider the con-
figuration to be fixed, and the frame to be moving, in
which case hidden variables are unnecessary, and
dm}’? is nonzero owing to relativistic effects. In such
a case the group of automorphisms can be understood
as a transformation from one moving frame to another.
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IV. METRIZATION OF THE SPACES"!

Since the group of automorphisms of X, Z, and @ act
in the same manner, it is possible to develop the metric
for the generic case, For this purpose, let M be the
pXn matrix X, Z, or @, which is transformed to

M, = (AM +B)(CM + D) = (MB + A)}(MD +C), (IV.1)
where /I:A', etc., or X:A*, etc., as required by the
nature of the groups O(4, n), U(2,#), or Sp(1,n). Now,

MMy 1= (MB +A) (MM - 1)(BM +A)™ (Iv. 2a)
and

MyM; 1= (MC + D) (MM = 1)(CM + D)™, (IV. 2b)

We also have
dM, = AdM(CM + D)™ _ (AM + BY{CM + D)"*CdM(CM + D)

= (MB +A)rdM(CM + D) (1v. 3)

on use of Egs. (IV.1), (II1.7), (II.2), and (II.5). The
differential operator

3/om} a/aml a/dm}

a/omi 8, 0mi

By = (Iv. 4)
a/omy 9/3mly - -- 8/8;;@
transforms according to
3y, = (CM + D)2y (MB + A) (1v. 5)

since Tr(dMd,) must be the invariant operator d. In
Eq. (IV.5) and others to follow, 2} does not act on co-
ordinates to the right; only formal matrix multiplica-
tion is intended.

The distance function

ds? = Tr[(MM = 1) dM(MM - 1) M| (IV. 6)

is the only function which can be constructed on the
spaces which is both quadratic in the dw% and is invari-
ant to the action of O{4, n), U(2,»), or Sp(1, ). The cor-
responding Laplace—Beltrami operator is

A=Tr[(MM - 1)3,(MM - 1)3}], (Iv.7

where 5}, is the complex conjugate of d,, in case M is
Z or @, and is 9y for M =X. It will later prove con-
venient to multiply the right-hand sides of Egs. (IV.86)
and (IV.7) by 3 for the quaternion spaces.

There is a multitude of other invariants that can be
constructed. For example, the eigenvalues of the cross
ratio!?

Rla, b, ¢, d) = (MM, = 1)(M,M, - 1)
X (M My = 1/(M M, - 1)

are invariants, where M,, M,, etc., are different
points in the configuration space.

The invariant volume elements of the three spaces
are likewise obtained by construction. From Eq. (IV.3),
the Jacobian of the map of mXxn matrices X to X; is!?
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|XB'+A'|""|CX +D|™,
which is easily seen if one writes fiX as the row
(dxi,dxt, ..., dxt dxd, ..., dx™ =dX. Then P'dXQ
~d2(P® Q), and |P® Q| = |P|"|Q|™. Hence the invari-
ant volume element dV, of the real space is

dv,=|xx'-1]"/2| x'x - 1|™/2x

:IXX’_1|-(n#m)/2X (IV. 8a)
where X =dx}dx?- - - dx” and where use has been made

of Egs. (IV.2). For pXn complex matrices Z, the
Jacobian of the map (IV.1) is

1ZB* + AX||I-®?||CZ + D||-?",

where 1S1 is the absolute value (modulus) of the deter-
minant 1S!. Hence, the invariant volume element dV,
of the complex space is

ch:|ZZ*—1|'("’p)Z, (IV. Qa)

where Z =X. The space of n quaternions has as invari-
ant volume element dV, the quantity

dv, = | Q@* - 1]-™1¢ (1V. 10a)

with Q:)'(; In all of the above, use is made of | MM
- 1l=IMM-=11,

We shall now obtain the polar forms of Eq. (IV.6).
There are considerable differences between the several
spaces that become apparent when the metrics are ex-
pressed in this alternative fashion.

Any mXn (n> m) X may be written ag!+!3
X=P'(A,0Q=P'AU, (Iv.11)

where PP'=P'P=1,, Q@' =Q'Q=1,, Aisanmxm

diagonal matrix, and U is the first m rows of @. Then
XX’ -1t =P'(A%-1)P,

(A2-1)* o (1v.12)

’ a4
xXX-1)"=@ 0 -1

Q.

The orthogonal matrix P depends upon m(m ~1)/2
variables, A contains m variables, and U contains mn
—m{m +1)/2 variables since UU' =1,; altogether there
are mn variables as required. We have

dX=dP'(A, 0)Q + P'(dA, 0)Q + P'(A, 0) dQ,

PdXQ' =(dA, 0) + (A, 0)6Q - 6P(A, 0), (Iv.13a)

where 0Q =dQQ' = - QdQ’ and 6P =~ PdP'=dPP’ are
antisymmetric since P and @ are orthogonal matrices.
Let
8A OB
GQ = s
- 6B’ 8C

where A =-84"is mXm, 6B is mX(n-m), and 6C
==~6C'is (n~m)X{n-m), so that

PdXQ' = (dA + ABA — 6PA, ASB) = (dA + 59, ASB).
(IV. 13b)

The metric equation (IV. 6) is then given by
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ds? = Tr{(A% = 1) (dA + 6Q) (A%~ 1)"L(dA + 6Q)
~ (A’ = 1)'A26B5B’],

in which the term in 8B8B’ is absent if m —n. The
matrix 682 may be expressed uniquely as the sum of
symmetric Ad0 — dOA, df=~de’ = (8P + 64)/2, and anti-
symmetric Ad¢ +doA, dop =-do’ =(8P — 6A)/2, parts
so that

ds? =Tr[(A%2=1)2dA%+ (A2 = 1)"1(AdO - dOA)(AZ - 1)
X(AdO—doA) — (A%~ 1) (A dp +doA) (A2~ 1)

X (Ado +dpA) — (A2~ 1)'A%6B6B’]. (IV. 14a)
Use of the substitution A, =coth{, finally gives
m
ds®=7, dE + 27 sinh®(&, - &) d62,
o=l B a
+sinh?(&, + &) dp2, - 2y cosh®s, 2y dw?,  (IV.14b)
@ =l j=l

where the dw,; are the elements of 6B.

The invariant volume element in polar coordinates is

dv, = [n | cosh2&, — cosh2&,|db,, dqjaﬁ]
B>a

X[ﬂ cosh™ &, d&, I dwaj].

o =1 j=i

(Tv. 8b)

The Laplace—Beltrami operator is calculated from the
classical formula A =g"1/23, (g'/2%¢*¥3,); it is not given
here owing to the fact that it is a lengthy formula that
does not appear to be computationally useful.

Consider now the complex space. Let P*ZZ*P be the
diagonal matrix diag(??, A%). Further, let P, be
diag(expio,, expi¢,). Then PyP*ZZ*PP' = P*ZZ*P, so
that P is the coset U(2)/U(1)xU(1). Thus, the polar
form

Z =PAU,

where UU* =1,, depends upon dim(P) +dim(A) + dim(D)
=2+ 2+ (4n — 4) = 4n real variables as it should.'* Cal-
culations similar to those above give for the general
complex space the metric

ds?=Tr[(A%2-1)"2dA%+ (A2 - 1) (AdO - dOA)(AZ - 1)
X(AdO ~dOA) = (A%~ D Adg + doA) (A% - 1)t

X (A do +dpA) — A3(A% - 1)1 06B5B*|, {IV.15a)

where df=-d6* and dp = - do* are p Xp skew Hermi-
tian matrices, and 0B is a p X{n - p) complex matrix.
With the change of variables X, = coth{, this equation
gives

dS?‘:

e

dE +sinh? 2&, do? + 27, sinh?(&, — &) dB,,d0,,
Boa

]
LN

— 2. n=p _
+8inh%(Ey + &) dbog ddgs - 2o COShPE, 24 dw, ; dw, ;,
=1 il
(Iv. 15b)

where the d¢, are the moduli of the diagonal elements
of do.

The invariant volume element is
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dv,=11 (cosh2&, ~ cosh2£;)%d8,5doy;
8>

4 n=p
x I1 ginh2¢, cosh®™? ¢, dE, do, 1 dw,;,

od i (IV. 9b)
where di,; is the product of the real and imaginary
parts of dy,;. The Laplace—Beltrami operator is again
a complicated object, and is not given here. Suffice it
to say that the angular parts of both the real and com-
plex differential operators yield simply solvable differ-
ential equations, but the radial parts are extremely in-
tricate. This is not the case for the quaternion space,
to which we now turn.

Since Q@* =N%1,, where N is the norm of the n-
dimensional quaternion @, one may write

@ =NKU,
where UU* =U*U=1,,, UJ,U' =J, KK'=1,, and KJ K’
=J; on account of Eq. (III.6). The 2X2n matrix K has
but two nonzero elements, the locations of which will

be later chosen for convenience. We require the polar
form of

ds? = (1/2)(N? = 1) Tr[dQ(@*Q - 1) dQ*].

Now (dQ)U* =dNK + NK&U, where 6U =dUU* has the
structure

ida, dby da, db,
o |~ dby d?l db; d_Dz
- dbz - idal dbl )

- da,
-dby -dD, -db{ —dD;

in which ¢, is a real parameter, 5, is a 1X(z - 1) com-
plex vector, and a, is a complex parameter. It is con-

venient to choose K such that U(Q*@ - 1) U* = (N2K'K
- 1) conforms; thus

(0 i 0 0 0
(N*K'K - 1) = 0 = Ina 0 0
0 0 -1t 0
0 0 0 -1,
and
1 0,4 0 0,y
K=o 0,1 1 0,4

The matrix KOU has the form
iday db, da,  db,
-da, —db, -ida, db,

These quantities give

ds?=(N? - 1)"2[dN? + N*(da} + da,das) ]

~ (N% = 1)"'N%(db db, + db,db,) (Iv. 16a)
or
3 t(na1)
ds®=dt% + sinh®£ cosh®£ 2 doZ — cosh®t 2, dif,
a=1 =1
(Iv. 16b)
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where do —~da and dn—db, and where N = cothé.

The volume element is

4 (n-1)

3
dV, =sinh® cosh™! £dE 1 do, T1 dm, (IV. 10b)
w=1 1=1

and the Laplace—Beltrami operator is

2 3
A:iz+[3 coth + (4n — 1) tanhé)— + 4 csch®2¢

d& 0§
3, 32 4(n-1) 92

X2 == - sech®t 2, Frl (Iv.17)
o=l o 1=1 nl

This naive rendition of the metric misses the important
fact that Y do? and ¥ d7? are not simply the metrics on
R® and R*™1), We have instead SdoZ isomorphic to the
metric on Sp(1), and 3 dn? isomorphic to the metric on
Sp(n)/Sp(1) XSp(n~ 1). The same considerations apply
to the real and complex spaces.

Let A € Sp(1); then
Z}doﬁ = Tr(dA dA*).

Represent'* A by

cos(w/2) exp[-i(8+¢)/2]  sin(w/2) exp[-i(6- ¢)/2]

- sin(w/2) expl[i(6 - ¢)/2]  cos(w/2) expl[i(6 + ¢)/2]

so that

2do? =Hd? + de? + dw? + 2 cosw dBde)

or
doy = 5(d8 + cosw do),
do, =3 sinwdo,
doy =3 dw,
Furthermore,

524l Lt cotw L 4 ese? (82+82
Er i P A T ET P

32 ]
- 2cosw m)

is a well-known operator encountered in the rotational
Hamiltonian. The metric on the compact space Sp(n)/
Sp(1) XSp(n - 1) is left as an exercise.

V. GEODESICS AND CURVATURE

The connection forms and curvature tensors for the
three spaces follow from equations for parallel dis-
placement of a vector. Let F=(f*") be a contravariant
vector with components in the real, complex, or quater-
nion space. The change of basis, Egs. (IV.1) and
(Iv. 3), gives

F, = (MB +A)F(CM + D)™, (V.1
so that
F+F=Tr[(MM~1)F(MM - 1)"F | (V.2

is an invariant. The scalar F - F is not altered on trans-
port of F along a geodesic, so that

d(F-F)/ds =0,

B.E. Eichinger 1423



This equation is satisfied identically if

F = F(MM = 1) MM + MM(MM = 1)'F
= FM(MM = 1)"'M + MM(MM = 1)"F, (V.3)

in which F =dF/ds_and where the last equality in (V. 3)
follows from M(MM ~ 1) = (MM - 1)M. The Christoffel

symbol is thus obtained as'?:®

Thm == (15,85 8 + 1455 0}), (V.4a)
where

T =(t,) =M (MM - 1), (V. 4b)
The equations for geodesics'® are

M = 2MTM =0, (v.5)

which can be obtained by a somewhat tedious calculation
based on the variational principle &s =0. Alternatively,
Eq. (V.5) follows from the classical formula X*
+%.X*X% = 0 on replacing « by oi, etc.

Since the point (A, 0) in the real or complex space or
the point NK in the quaternion space can be moved to
any other respective point by a linear fractional trans-
formation, it is sufficient to solve Eq. (V.5) at these
points. Hence, all geodesics are images of

cothny s 0 0 0]
0 cothn,s 0 0
[A, 0]= 0 0 cothm,s 0 , 0
0 0 0 cothmn,s
(v.6a)
for the real space, where 72 =1, or of
[A,0]= cothgys 0 (V. 6b)
, 0
0 coth{,s
for the complex space, where ¥ ¢%2 =1, or of
NK =coths K (V.6¢c)

for the quaternion space. In this form the geodesics
have a singular origin which corresponds to formation
of the system, It will later be demonstrated that the arc
length s is essentially identified with physical time £,

The curvature tensor Rg;s; = Riiyus,; on the real space
is obtained from the classical formula as

Ryii==- M+ 2[(XX = 1), [(X'X - 1)1, (V.72)

that on the complex space follows from results on
Kidhler manifolds® and is given by

Rgipr == m+2[(Z2x - D ,l(z*Zz -1y (V.7D)
for the quaternion hyperbolic space
Ry ;== (n+DQJ,Q" ~ ) L l(Q Q- I ;.
(V.7¢)

The spaces are Einstein manifolds of constant negative
sectional curvature. It should not be considered strange
that the constants in Eq. (V.7a) and (V. Tb) are differ-
ent from that of the quaternion space, Eq. (V. 7c}; topo-
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logical equivalence is not sufficient to guarantee equi-
valent Ricci tensors.

VI. LIE ALGEBRAS

The infinitesimal generators of the Lie algebra
so(4, n) are

Myg=Xo198; = X5, 0 ~X0' ~ (X2")’,
Mij=x,:8, ;= %,;0,;~X'3-(X"9),

pwivej uivpi

]V[ozi:xalxuiaul = Xai;= Oay "X(X’B)’—X— ay

in which the summation convention on repeated indices
is used in the first equations and where matrix notation
is also given. These operators commute with the
Laplace—Beltrami operator, and so are conserved.
The total (spin plus isospin) angular momentum opera-
tors are the M,,; the M;; are internal symmetry oper-
ators; the M,; are related to dipole transitions and to
the energy, if extrapolation from the work of Barut and
Kleinert'® is warranted.

For su(2, n) the operators commuting with the
Laplace—Beltrami operator are

~Z3" = (Zd")*,
~Z'*~Z'3,

_ A .
Loys=241851 — 2594,

L“:; 5 -z d

wivni tuivu g
Lai:Zalzuiaul —gaiNZ(Z’a)’-Sa

where 2y, =3,/92,;. The generators of sp(1) and sp(n)
are given as

J,Q2 - (Q9Y, and J,Q°2~(Q'3)'J,,

but the noncompact part of sp(1, n) has so far eluded
the author.

VII. INTERPRETATION

The introduction of projective coordinates for repre-
sentation of the states of a system has been accomplished
without reference to the temporal coordinate. It is
clearly necessary to uncover the nature of arc length,
to see if there is perhaps some connection between this
parameter and duration. For this purpose, it is neces-
sary to consider a system composed of a single particle
in P?  the projective space of three dimensions. As
noted previously, this is inconsistent with geometry;
however, it is consistent with the usual physical repre-
sentation of the world line of a single particle by a
four-dimensional manifold. That is, the symmetric
space O(4, 1)/0(4) X O(1) should correspond in some way
to an established precedent.

Let
w' =1,

X = (xy, Xy, X3, ¥g) =00, oF=XX',

Then, since
X'X D =X'(XX - 1) X~ 1=(*- D' X'X -1,
we have
ds?= (0%~ 1) dX[(o? - VXX - 1]dX
= (0 = 1)3(XdX") (XdX') = (¢® - D'axdXx' (VIL1)

from Eq. (IV.6). But dX =dou + odu, udu’ =dun’ =0, so
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FIG. 1. Antipodal projection of the unit sphere S™! onto P™t,
Opposing points on the diameter are identified, so that P™! ig
isomorphic to $™'/{+ 1}. The auxiliary figure shows that the
(n —1)-dimensional vectors » and u satisfy the proportion »/1
=u/u,; the u; are homogeneous coordinates of the projective
space P,

that

dst = (0% = 1)"2do® - Ao = V  dudu’ (VII. 2a)

or

ds? = dt% - cosh®Edu du’ (VIL 2b)

where o= cothf. The points «# such that uu’ =1 con-
stitute the space $%; hence dudu’ = dw? + sin®w(d6?
+sin?0d¢?). Use is now made of the well-known equi-
valence P®~S%/+1}; that is, the three-dimensional pro-
jective space is topologically equivalent to the three-
dimensional sphere with diametrically opposed points
identified. As is shown in Fig. 1, the antipodal projec-
tion of the sphere onto the plane is one for which

vi/t=u;/u,

and the equivalence is demonstrated. The parametric
representation [sinw sinf cos¢, sinw sind sing, sinw cos¥,
cosw] of u gives v ~tanw([sinf cos¢, sinf sing, cosd); in
the neighborhood of the poles w=0, i.e., for small
distances, and for large ¢, the metric Eq. (VIL 2b)
becomes

ds?=d i — e2[(dw/2)? + (w/2)2(d? + sin®8 d¢?)].
(VIL. 2¢)

The substitutions & = ket and k¥ =w/2, where ¢ is the
velocity of light, ¢ is time, and « is a constant having
the dimensions of reciprocal length, give

(ds/K)? =c?dt? — exp(2kch)[dr? + v2(d6? + sin®8 dp?)
(VIL. 3)

which is equivaleni:17 to the de Sitter metric. For small
t this approximate metric reduces to that of special
relativity.

What has been shown is that regions of the space
0(4, 1)/0(4) XO(1) reduce to the matter free space of
general relativity with cosmological term x =3«%. It is
eminently reasonable that general relativity correponds
to times long after the origin of the system, and to
points near the gravitating body. General relativity was
devised to explain Newtonian gravitation, which is known
with certainty only for local phenomena. Since the
transformation X = coth(xct)u accomplishes the reduc-
tion, and since also all geodesics are images of X,
=(coths, 0, 0, 0) [it may be noted from Eq. (V.5) that s
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is defined only to within an equivalence class s ~as + b),
it is apparent that s is essentially physical time 7.

VIII. SOME SOLUTIONS

Geodesics on the polar form of Sp(1, n)/Sp(1) XSp(n)
are readily obtained, and prove interesting. The function

. 3 . 4(nl)y
F2= ¥4 ginh®£cosh?®£),02 — cosh®E 2, nE=1
1 1
together with the Euler equations

4 o,
ds 9k, dx,
give
0, = a, /sinh?£ cosh?¢,
n, =b,/cosh®t,

2 + a?/sinh?& cosh?f — b2 /cosh?E =1,

(VIIL 1)

where a®=75 a2 and b*=7 5%, all of which are integration
constants. The solutions of these equations are

cosh2 &(s) =7 cosh2s - %,

M (s) = b,(@® + b2t 2cot™ (x coths) + 7,(0), (VIIL. 2)

0, (s) =a, atcot™ (v coths)
- a,(a®+ 5%/ 2 cot (x coths) + o, (0),
with
2= 4a® + (b +1)%,
xB=(r=b%+1)/(r +b%2-1),
yVi=(r=02=-1)/(r+b62+1).

a=b=0, £=s; otherwise £ possesses a minimum
min=(1/2) cosh™ (» = %) at s =0. In terms of the norm
N of the quaternion @, the maximum N, =[(r-b%+1)/
{r-=b2=1)]'/2, The norm approaches coths
asymptotically.

The evolution of the system can be pictured by means
of the projective sphere. Particles comprising the sys-
tem may be represented as points on a sphere of radius
N, which points are projected onto the P® plane, Ini-
tially, the sphere has a very large radius and the points
are clustered around the poles. With increasing s, the
sphere shrinks, and the particles migrate towards the
equator. At infinite time the sphere becomes the unit
sphere, and the points become distributed more or less
uniformly upon the surface as determined by the initial
conditions.

Physical quantities on each of the spaces are assumed
to be derivable from functions that at the very least are
eigenfunctions of the LB operator with eigenvalue zero.
Such harmonic functions can be obtained from the
Poisson kernel.'''® The kernels are not given here;
instead parts of the harmonic functions on Sp(1, n)/
Sp(1) XSp(n) will be found by more traditional methods.
The Laplace—Beltrami operator as given by Eq. (IV.17)
is separable; the radial part gives

F” +[3 cothé + (4n — 1)tanh ¢ |F’
- 161(1 +1) csch®2tF — ksech?tF =0
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where F' =dF(£)/dt. Here we have set 3 8%F /302
=-4I(l +1)F and 3 9°F/8m2 =kF. The identification of

¢ with / leads one to look for solutions which are finite
at finite £, The first step to a solution is to eliminate
the term in csch®(2&)F by means of the substitution
F=tanh’(£)f(£), whereupon one finds B(8 +2) =4I(I + 1),
i.e., B=2l, -2(I1+1), and

" (28 + 3) + 2(2n + 1) sinh®¢
sinh{cosh

4Bn-k
cosh?E

f e+ f=0

(VIIL. 3)

The term in tanh(£)f’ is eliminated by means of f=g/
cosh®™lf, and Eq. (VIIL 3) reduces to

= 28+3 , dn-1)=-k-(28+3)
Sinhf coshE® cosh®t
- (2n+1)%=0.

One may now look for solutions of the form
g=2,a; cosh’¢,
i

for which the indicial and recurrence relations are

[4n(n - 1) = k= (28 + 3}]a, =0, (VIIL 4a)

[4n(n-1) - kla, =0, (VIIL. 4b)
_ (Cn+1)2_ ;2

G = T ) k= G T DG 1=28) %" (VIIL 4c)

The odd series terminates at j=2n+1, provided the
denominator in Eq. (VIII. 4¢) does not vanish. This pos-
sibility is eliminated if 8 =- 2(/ +1), whereupon

a,=0,
kE=4n(n-1),

g — 2= (2n+1)? "
TG4+

or

G (n—j)(n+j+1)a
2j+3 — (j+l)(i+2l+2) 2j+1»

Thus

O<js<sn.

n j R
(5 — cosh 3, S DL @I+ D!

2
o it=PIEI+j+ D1 cosh? ¢,

and one complete solution of the £ equation is

T 2341y 5 S0 (- l)j(n+]')!
Ful®) = coth ey o T+ 101

sechz(n-j ) £
(VIIL. 5)

The other solution is obtained upon eliminating the
term in sech?(£) F(£) by means of the substitution F(£)
=cosh® (&) f(¢). Standard methods give

GL(&) = (cosh&) 2! (ginh§)¥

5. Tl/2+i+1 +j)(sinh2 )2/
it @I+ (R +1)/2-1=))

which is linearly independent of F.(£) in Eq. (VIIL 5).
This solution is a finite polynomial if the maximum val-
ue for ! is (n-1)/2 and if [ is half-integral for even n
or integral for odd =n.

The solutions on Sp(1) of the equation'®
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3% 3y 2 (az¢ 9%y
W+cotwa—(;+csc w 6—9—2+W—Zcoswaea¢

==Il+1

are of the form

y=explil3G +5)0+3( - kol 2w),
where
i2/4 k?/4
cos?w/2  sin®w/2
The choice j + %= 0 is tantamount to orienting the co-
ordinate frame on P?; for initial inspection choose both

j and k positive. It is clear that the solutions of the £
equation allow / to be either integral or half-integral.

Q'+cotwﬂ'—( )Q+Z(Z+I)Q=0.

The substitution
Q=cos’w/2 sin"w/2f(w)

gives

(P +1/2) cotw/2 - (j +1/2) tanw/2]F
+(l -l +p+1)r=0,

where u=(j +%)/2. The two solutions of this equation
are

= n+1+p)!

A =2 = ) T T T = =1 08/ 2
and
_ n RUI=u)le+I+ )t an
f(w)_E"(— 1) n!(n+k)!(l+u)!(l—u—n)!smz w/2.

Hence, [ - u is integral and > 0 if the polynomials are
finite, and j and % are integral. The solutions on the
angles 6, ¢, and w can have period # 27 owing to the

fact that the projective sphere is doubly connected. Solu-
tions for [ =0 are infinite series, one of which (cosine
series) diverges at the origin of P* and the other of
which (sine series) diverges at the P? infinity. States of
any value of u appear to be allowed, and may correspond
to excited states.

The most interesting aspect of these solutions is that
integral / and half-integral / series fall into separate
categories. Since there are two allowed solutions for
eachl, p={+k)/2and u' = -k)/2, there are 2(I +1)2
solutions for each integral I. These are elementary
solutions. For half-integral / the solutions number
4(!=1/2), 121 =3/2), 24(1=5/2), etc. Might not these
be leptons (4), a quartet of tricolored quarks (12),
etc. ? Table I contains a list of what might be called
ground state solutions for j, #> 0 and for the first few
values of /.

These solutions form the basis for further analysis,
which is not pursued here. Suffice it to say at this point
that particles with half-integral spin are comprehensible
in terms of projective geometry. Wave-particle duality
and spin find a natural home in projective geometry.
The projective space P ~8*/{+ 1} =S0(3) is not simply
connected, " and is somewhat more difficult to imagine
than is the Euclidean space E®. However, this small
extension from E3 to P® holds promise of expanding our
understanding of the physical world., There are many
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TABLE I. Allowed quantum numbers from the Sp(1) equation.

Integral series

l 1/2(j+k) i k 1/2(5~k) Number of solutions
0 0 0 0 0 2%
1 0 0 0 0
1 2 0 1
1 1 0
0 2 -1 8
2 0 0 0 0
1 2 0 1
1 1 0
0 2 0
2 4 0 2
3 1 1
2 2 0
1 3 -1
0 4 -2 18
L 0=u=L 0sj=2L 2L —j —p=p'=p 2(L +1)?
Half-integral series
1 1/2(j+k) i 1/2(j—k) Number of solutions
1/2 1/2 1 0 1/2
0 1 -1/2 4
3/2 1/2 1 0 1/2
0 1 -1/2
3/2 3 0 3/2
2 1 1/2
1 2 —-1/2
0 3 -3/2 12
5/2 1/2 1 0 1/2
0 1 —-1/2
3/2 3 0 3/2
2 1 1/2
1 2 -1/2
0 3 -3/2
5/2 5 0 5/2
4 1 3/2
3 2 1/2
2 3 —-1/2
1 4 —-3/2
0 5 -5/2 24
L 1/2=u=L 0sj=2L 2L -3 —p=p=p (2L +1)(L +3/2)

21=0 is a special case, for which more solutions are allowed than is indicated,

difficult problems to be resolved; these include the
formulation of suitable norms over infinite volumes,
investigation of the topology of the spaces, and classifi-
cation of solutions in terms of the eigenvalues of the in-
finitesmal generators of the Lie algebras. However, the
fact that one arrives at the mathematical structure
found here from two very different viewpoints?® lends
support to the theory.

Note added in proof: The Laplace—Beltrami operator
Eq. (IV. 7) is correct for the complex space, but not
for the real and quaternion spaces. The correct opera-
tors are

A=Tr{(XX' - 1)3(X’X - 1)3']+ 2Tr[(XX" - 1)X?"]
and

a=Tr[(Qe* - 1)3(@*Q - 1)3'] - 2Tr[(QQ* - 1)Q3'],
respectively. The generators of the noncompact parts
of the groups are in all cases M(M’3)’ =3, thus cor-
recting the operators for so(4,») and adding to those of
sp(l,n), In Eq. (V,7c) the coefficient (n +4) should be
changed to 2(z +2), and the last sentence of the para-
graph in which this equation appears can be deleted.
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APPENDIX

Some Lie group and algebra isomorphisms and
homeomorphisms are listed here for convenience. All
but one are taken from Helgason.® The symbol = denotes
topological isomorphsism, and ~ represents a homeo-
morphism. Groups are indicated by capital letters;
their corresponding algebras are given small letters:

U(n) ~SU(n) X U(1),
S[UGm) X U(n)] ~8U(m) X U(1) XSU(n),
Sp(m, n) N U(2m + 2n) = Sp(m) XSp(n),
SO(n) =Spin(n)/F,

su(2) =so(3) =sp(1),
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so(5) =sp(2),

s0(4) =s0(3) X s0(3) =su(2) xsu(2) =sp(1) xsp(1),
so(3, 1) =sl(2, C),

so(6) =su(4),

sol4, 2) =su(2, 2),

so(3, 3) =sl(4, R).

The group Spin(z) and the discrete subgroup F are
defined by Chevalley, Ref. 7.
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Polarization theorem for diffractive excitation at large
momentum transfer
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The kinematics of two-body collisions with large s and {f favors small helicity states (O for bosons,
+1/2 for fermions) over all larger helicities (supposing one or more particles with spin > 1 are involved in
the collision). We state and prove this result in the form of a theorem: If there exist no constraints among
invariant amplitudes in the kinematic region s»|f» (mass)® for a two-body process with arbitrary
spins, then only the smallest helicity states are important. This is a purely kinematic result, and dynamics
can cause physical scattering amplitudes to have different properties, by providing constraints among the
invariant amplitudes so as to evade the theorem. Nevertheless, the result is useful in that it clarifies the
nature of two-body spin structure when |4 is large, and enables one to isolate the purely dynamical
conditions among the invariant amplitudes which must be satisfied if there is no “kinematic polarization™

of the nature described. In diffractive excitation of higher spin states, sufficiently large values of s and |

can be reached to make the theorem of practical interest.

. INTRODUCTION

In the kinematic region where momentum transfer
it] is much larger than any (mass)? and s is much
larger than |{| there is practically no difference be-
tween the s- and {~ channel amplitudes describing a
two-body reaction, Up to a phase they coincide,

{Foie] = 6.a, 454, 1 F oAb 1)

[The notation used here is ab — cd for the s channel and
Db — cA for the ¢ channel, with D=d and A=a; thus
s=(p,+bg), t=(p,- b,)?, m, is the mass of particle
¢, and so on, ] In Eq. (1) we see the helicities of parti-
cles ¢, b attached to the continued ¢-channel amplitude
coincide with the same labels on the s-channel am-
plitude, while the helicities of antiparticles A, D are
opposite to those of particles a,d. This is caused by
the reversal of the 4-momentum associated with parti-
cles a,d under s—{ crossing,

Proving Eq. (1) is easy. The s—{ crossing relations
1
are”

J J
fih= T XA ()R ()
c'. A’, D', [
J ()
xdb'g(Xb)fc‘A"D'b‘ s (2)

where for large s
cosx, = (t +mi~m2)/T,,
cosx, - (t+mi-m%)/T,,, 3)
cosxg = (£ +mi—m3)/ Ty,
cosx, = (t +m}~ mi)/Tdby
with
12, (]2 + 2] 1] (2 + md) + (2 = )2,
For large |ti, choosing the continuation T, — - I¢],
Ty, —— It} it follows that x,—0, x,—~m, Xg 7, X, 0.

Crossing equations which are formally identical to
Eq. (1) are found when all particle masses are set
equal to zero. However, in this case only the helicity
amplitudes with maximum helicities are of interest,
the reason being that for a massless particle with spin-
J only the helicity states ix| =J are physical. All the
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unphysical amplitudes with x| <J are decoupled from
the physical amplitudes (the unphysical s- and - channel
amplitudes cross into each other). Normally one would
set these unphysical amplitudes equal to zero.

The crossing equations (1) have a rather different
meaning. In these equations all the helicity labels are
physical, and it is not obvious that any one of them is
more important than the others. If not, then there is no
polarization at large |{|. However, we shall show
there may very well be polarization, as a result of
kinematic effects, whenever one of the final particles
has spin = 1. If there are no constraints among in-
variant amplitudes at large |{|, then the helicity am-
plitudes with the smallest helicity labels (0 for bosons,
+ 3 for fermions) will be the only important ones., How-
ever, if certain constraints among the invariant am-
plitudes are satisfied, this need not be the case; some
other helicity amplitudes may be more important,

In Sec, II we shall prove that for large s and |#| the
smallest helicities are kinematically favored over all
higher ones; a sufficient condition being that all in-
variant amplitudes are independent in this region, The
condition necessary to prove this result is weaker; it
is necessary that the invariant amplitudes do no! satisfy
certain constraints involving s and {. This general re-
sult can be established very easily; one only needs a
certain property of the equations which connect helicity
amplitudes with invariant amplitudes. This property,
which is nothing more than the appearance of certain
mass factors in the invariant amplitude coefficients,
may not be generally known and therefore we must say
something about it., To minimize the complications as-
sociated with arbitrary spin we shall first discuss colli-
sions with spins 0+0—~L +0 (i, e., diffractive excita-
tion of one of the initial particles into a state with
spin-L). For this process we give the equations relating
helicity amplitudes and invariant amplitudes. Then we
can show these equations have the mass factors we
need, and it is easy to prove the large-i¢| result for
this special case. Later we sketch the general proof,

As already mentioned, it is possible that the in-
variant amplitudes satisfy certain conditions, such that
the kinematic preference for small helicity is avoided,
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and other helicity states are dominant. This is also
discussed in Sec. II, and we use our spin-L example to
investigate the nature of these constraints, It seems
that conditions among the invariant amplitudes cannot be
found which lead to all the helicity states being com-
parably important. (For example, a spin-1 particle
should have predominantly either helicity =+1 or
helicity =0,) Therefore, one can expect some sort of
polarization at large [¢|, although without a specific
model one cannot predict exactly what this polarization
should be.

1. SPIN STRUCTURE FOR LARGE s AND |¢|

Consider the diffractive reaction 7 +7 —7* +7 with
spins 0+ 0— L + 0 where the diffractively-excited state
7* with spin- L has unnatural parity when the corre-
sponding initial meson 7 has unnatural parity. Parity is
unchanged in the elastic transition b -~d, and there are
L +1 independent amplitudes, In Appendix A we in-
troduce a complete set of invariant amplitudes
Ayy..., AL, and calculate the s- and f-channel helicity
amplitudes in terms of them,

(m N2V GEf

=S L M@ - N4 ) (L= N o)1)
N=(

X SeTedis " (XA Lows @)
(m, \/—2—)LG£‘f e(oto)o
N
= 2 N[N+ (N =)l ]2
N=lel
X ST LA (XA n. (5)

The crossing angle x, is defined by Eq. (A10)., T, is
given above and

2y =% = 2s(m%+ md) + (m% - md)%,
The rotation matrix elements for 7> 0 are
a3 (x) = (81X)" s [(V+ ) (= m)1 2P (cos),
where the polynomial

Pr@)=2" ; (Z)(N—IZ—

X (1 +2)8(1 = z)¥-n8

5)("””

has the value

Pe=0=(y",)

at z=1, Thus for small yx,,
NN s 1 [(N+n)1] 2
dOn(Xc) =~ (smxc)"n! on [m] .

We have already seen that y, — 0 in the kinematic re-
gion considered; indeed for s> £ > (mass)?

siny, = - 2m/VIiT, (6)

where we have chosen T, ~- |f|. Therefore, in this

region, for ¢2 90,
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(mV2)GIf
La
I c_lc (L-N)!
JTH ] i el =N=-o)l
(m VD GEf
z_L_ﬂc__c 7[" __ N Nl En
=) ( J l'tl) v CE(N=¢)1° ]
In Egs. (7) and (8) we already find the proof of our
assertion that for large s and |#| the kinematics favors
small helicities. This is apparent from the overall fac-
tors (m,/VE)° on the right in these equations. If all the
invariant amplitudes A, are independent, then, because

my>> VI, the c=0 helicity amplitudes fygih = (=) 2/t
will be dominant.

s*[E| =Ny, (7)

NA1+NH (8)

To make this even more explicit let us consider the
simple case L =1, where the s- and {-channel ampii-
tudes are

m 25 =~ m VDA Sca, (9)
120500 = = Tea COSX AL+ Sealy, (10)
MoV B = Mo VBAy/ Toay (11)
m.2f0050 = TexAA1 = Soa COSXcAy. (12)

In the limit of large s and i{| these formulas become

e 7 t 1/2
YREIAHET [— el (1 - —';’) Ai], (13)
s _ ] H
m2fho00 = S A+ A, (14)
Mg £\ 12
EREIATER [‘ T (1 - T) Ay, (15)
M2y = S (- AL A - A2> . (16)

All of Egs. (9)—(16) have the same dimension. How-
ever, the invariant amplitude coefficients for ¢ =1 in
Egs. (9) and (11) contain a factor m_ while the c =0
coefficients on the right in Egqs. (10) and (12) do not,
For ¢ =0 the dimension of the invariant amplitude co-
efficients is provided entirely by powers of Vs and V1,
Because Vs and V7 are much larger than i, the ¢ =0
coefficients are the largest ones. Therefore, if Aj, A,
are mdependent the ¢ =0 helicity amplitudes foﬂo(,

~ - fof) are dominant,

The rule for obtaining correct invariant amplitude
formulas for large s and |f| is to set all masses—ex-
cepting only overall mass factors—equal to zero, Thus
one arrives at the situation one expects; for large s
and ¢ all masses become unimportant, and essential-
1y the only quantities with dimension which are available
are s and /. In a sense, the overall mass factors in the
dominant helicity amplitudes do not count as quantities
with dimension because the same overall mass factor
appears in each of these amplitudes as a normalization
factor. This is true no matter whether the amplitudes
with the smallest helicities are dominant, or whether,
due to dynamical conditions among invariant amplitudes,
some other helicity amplitudes are dominant.

Dynamical constraints can certainly exist. For

example, we are free to imagine the condition
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l—il— Ap+4, S00nY/h) mn
is satisfied by the invariant amplitudes A, 4, in the spin
L =1 example above, This constraint causes the c=0
amplitudes (14) and (16) to be small, of O(m V), with
respect to the ¢ =1 amplitudes (13) and (15), the latter
becoming the same up to a sign in accordance with the
crossing equations (1), Thus by imposing the condition
(17) we make the ¢ =1 amplitudes dominant rather than
the ¢ =0 ones.

1t is important to note that one cannot assume that the
right-hand side in Eq. (17) is O(m,/V7), because of the
properties attributed to invariant amplitudes. It is
usually assumed that these functions do not depend
explicitly on variables like Vs or V7, and therefore it
should not be possible to satisfy a condition such as

'—i’ A, + A, <O(m,/VT).

If this is true, then one cannot arrange for the c=1
amplitude and the ¢ =0 amplitude to be equally im-
portant, One or the other will dominate, and there will
be polarization,

For any given process one can easily write down the
conditions which the invariant amplitudes must satisfy
if some helicity states other than the lowest ones are
to be important. Suppose in the spin-L amplitudes (7)
and (8) the invariant amplitudes A, satisfy the condition

L
5 ¥ty SOML/.
N=Q

(18)

Then the ¢ =1 helicity amplitudes will dominate those
with ¢ =0 and ¢ > 2. However, by introducing a second
constraint

L !

NZ:“ (N—\il—)—, sV NA,,x <O(m2/t)
we can make the ¢ =1 amplitudes unimportant, of
O(m,/VT), with respect to the dominant amplitudes
which are fyyg and foyg0. If we also change the right-
hand side of Eq. (18) to O(m’/#*) then only the ¢ =2
amplitudes are dominant,

(19)

If the spin-L particle could be treated as a massless
particle then only the amplitude fr44 would be im-
portant, The conditions which provide this are

L
1
7‘ N L-N__IV;__ 2 Lug
2 S R A 20/ 1), (20)
where ¢=0,1,...,L -1, An approximate solution of the
conditions (20) is
- L
Apy (=)t lele‘—! fs, 1), (21)
as one can verify using the identity
SRV AN TRy
Al s e TRl 22

From these examples it is clear that for diffractive
production of higher-spin states a variety of final
polarizations are possible, However, this polarization
cannot be entirely arbitrary, e.g., one cannot arrange
for all helicity states of the higher-spin particle to be
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equally important. This is because one cannot impose
constraints like (18) with odd powers of (m,/V{) on the
right-hand side; such constraints are inconsistent with
the properties of invariant amplitudes, Therefore,

some sort of final polarization should be present, In the
L =1 example, we saw that either the ¢ =1 helicity am-
plitudes 07 the ¢ =0 ones are dominant. For higher spin,
one can arrange for more complicated final polarization.

Let us now go on to the general problem, with all
spins arbitrary. The diffractive excitation reactions
of interest are Ny — N*g7, Nr* and N*p*, NN — N*N and
N*N* where N* and 7* are excited nucleon and pion
states with any spin. Limitations of space prevent us
from giving here the explicit invariant amplitude coef-
ficients for these reactions; they can be found in an un-
published work by the author. 3 The essential features
of the problem are the same for any two-body reaction,
The equations which give s-channel helicity amplitudes
in terms of any complete set of invariant amplitudes A4,
can always be written in the form

Joalel  Taaldl,  Ja-lal  Jg=lblg(s)
Mg img s mg e my b f

= E ‘M:da ny (23)
n
where for any choice of the helicities (c,d, a, b) the co-
efficients M7,,, do not contain any mass factor common
to all the invariant amplitudes, In other words, no
overall mass factov appears on the vight in any of Egs,
(23), although individual invariant amplitude coeffi-
cients may contain mass factors. Alternatively we can
write Eq. (23) in the form

Ty T Tpels) _ Y
,mgcmddmaambb cdfz)b_z A’VI:dabAm (24)
n
where
7 =, lcl ldl, lal, 15
]WZdabzmcc My ’naa My Mgdab° (25)

All helicity amplitudes are dimensionless, and the
dimension of Eq. (24) is fixed by the particle spins
independently of helicity. Thus for a given = the coeffi-
cients (25) all have the same dimension independent of
helicity. The available quantities with dimension are the
masses, s and f, For large s and |/| it is clear that the
largest coefficients My, are those with no mass factors,
The minimum values of Icl, |dl, lal, and (b| are
preferred. This argument holds for each invariant am-
plitude separately. No redefinition of invariant ampli-
tudes can affect the conclusion,

The same conclusion can be reached using covariant
language, although this is a less transparent way to
attack the problem. In Appendix B we briefly sketch the
proof of the large- |/| theorem using covariant wave-
functions for any spin,

The dominance of minimum helicities in a hard
(large-1£1) collision would correspond to polarization
of the final particles’ spins perpendicular to their
momentum, Dynamical constraints can exist with the
form

T bals, HAL(s,5~0 (26)
n

where p,(s, ?) is a polynomial in s and ¢, such that some
other polarization obtains. We have seen that conditions
of this sort can cause various helicity amplitudes, or
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combinations of them, to be dominant. But not all
helicity amplitudes can be made comparable in mag-
nitude at once, and so polarization of some sort is ex-
pected at large /| when final particles with higher spins
are involved.

The kinematic effect we have discussed in this article
does not exist if the final masses are very large (e. g.,
“fireball” production), Neither does it exist for inclu-
sive reactions, or for any exclusive reaction with three
or more final particles. A simple example serves to
illustrate the latter remark. Consider the reaction
a+b-c+H where H is some (unspecified) system of
hadrons and particle ¢ has spin-1, while a, b are spin-
less, The cross section corresponding to the measure-
ment of p,,, with other final momenta either summed
or unobserved, can be written

E;;—ig— =2 ehu(Polem (D)W,

n
where
Woo=guWite--,

The g,, term in W, is independent of the others, Using
the property ef.ch =— 6, we see that

(o
Ec(—i%;c— :‘? [~ W +-- ).
The W, term is helicity independent; in particular this
term has no helicity-dependent mass factor. The addi-
tional terms do contain helicity-dependent mass factors,
and for them one can find extreme kinematic configura-
tions which favor minimal helicities. But this does not
work for the W) term, Only if W, is negligable for
dynamical reasons can one obtain a polarization effect.
For two-body reactions a g,, term analogous to the one
above is never present in the cross section,

APPENDIX A

Here we calculate the invariant amplitude formulas
(4) and (5). There are L +1 independent amplitudes
(L are dependent because of parity invariance). For the
M function we write

Alui..-uL: (pa vt '[)a)u.i--'M-LAl
+pdu1(/)a e °Pa)u2”'uLAZ
oot Py ./)d)‘w’_%xé}q‘,,1

which defines L +1 independent invariant amplitudes
Ay, ... AL, The M function (Al) is to be contracted
with a spin-L helicity wavefunction ‘bcu1---(1’c) for parti-
cle ¢ in either the s channel or the { channel, These
functions satisfy the decomposition rule?

GEouyoveny (P = 20 GRGIL e (B0
n

(A1)

X®any s yageeesy (P, (A2)
where

GE=[@L)!/(L+e)(L=-c) /2, (A3)
The contraction formulas needed for the s channel are
G (Pg =+ D)t %08 o ()

== 8,0 (Sea/ MV 2)¥, (A4)
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G(pg= == D" 48,00 o, ()
= (=)l (x T oo/ m MMM +m) L (M- m)! |12,
(A5)

These are particular cases of general formulas. ®* With
their help one easily obtains the s-channel amplitudes
from the M function (A1),

(’ncﬁ)LGg cﬁl%)ﬂ
= () NL =ML -N+c)l (L-N=-o)1]1/?
N

X Sé:; TcLa-Nd(fc-N(XC)A1+N- (A6)
Similarly in the ¢! channel
Ga(bpe e pp)* 1" 020 (B0
= (=) (%) Soa/ MmN DYNI (N + ) LN = ) 1]/ (AT)
Gr(bar b 0 0,0 L (D)
= 8,0(T g/ MV 2)M. (A8)
The {-channel helicity amplitudes are
(mV2) G b
=2, ()N [(N+ ) (N-c)1]1/2
v
x SeaToq e (M san- (49)
The crossing angle ¥, is defined by
SpqT oo siny, =2m Vo,
Sy ToqcOsy, = (s +mk— ml)(t + m% - m?)
— 2mi(m? — ml- mi+ml, (Al10)

where ¢ is the physical boundary function, The fact that

this angle appears explicitly in the s~ and /-channel in-

variant amplitude coefficients makes it easy to obtain

the crossing formula
fc(()sﬂ)o = Z’: df’c(xc) c('é())o (All)

¢
from Egs. (A6) and (A9), The formula (A11) follows
from the identity

(L-MEL-N+e) (L= N=e) TG g ()
=Y, NI[(N+c)l (N=c)1]1/?

K

x[GA g 00dper= X)s

and the fact that invariant amplitudes cross like spin-
less amplitudes, Equation (A12) can also be written in
a more familiar form using 3-J symbols,

L N L-N -
(c 10 _c )dfoN(X)

v(L L-N

(A12)

= ,?, ¢ o (A13)
which is a special case of the Clebsch—Gordon decom-
position formula, A technical point concerning Egs.
(A11) and (A12) is that one must change the sign of ¥,

in Eq. (A9) when continuing to the s channel because the
normal fo the scattering plane flips over during the
continuation,

N
_‘C,)df'c(x)do”c: w0,

Alfred Actor 1432



APPENDIX B

The existence of the theorem proved in Sec, II can
be inferred from the following covariant argument.
This argument is not a proof; the only real proof is to
work out the invariant amplitude coefficients in the s
and ¢ channels, However it does show in covariant
language how the mass factors in Eq. {23) come to be
there, and it may help one to understand why this
formula is valid for all two-body reactions,

One knows that s-channel helicity amplitudes for
any spins can be written in the form

($) _ 8 \Jis) auohgitghtpy (8) (&)
fcdub—‘ljcuc‘lldud‘w ¢ d"a b‘l’nuaq/bub; (Bl)

where the M function M“cuauwb and the helicity wave-
functions ¥, carry Lorentz indices u;, as well as
spinor indices which we suppress. A similar formula
with the same M function holds for ¢ channel helicity
amplitudes, The wavefunctions \P{?L‘(p‘) for arbitrary
spin can be constructed from wavefunctions ¢,,(p;) for
spin-1, and if the particle is a fermion then a Dirac
spinor must also be included. This construction pro-
ceeds according to well-known rules*®: for spin J;
=L, +v; (v;=0 or % for boson or fermion) the helicity
wavefunctions ‘l’ifli consist of a sum of terms, each of
which is a product of L; spin-1 wavefunctions ¢,, {p;)
multiplied by a Dirac spinor when v; = 3. The total
helicity A; is the sum of the helicity labels on all the
¢’s appearing in the product, plus the helicity of the
spinor if v; =3, Dirac spinors contain no helicity-de-
pendent overall mass factor and we can simply ignore
them in the following discussion. The important part is
the product of polarization vectors ¢,,(p;), L; of them,
because these vectors do contain helicity-dependent
mass factors, In an arbitrary frame

mV 2 exp(Fid)ey, (p)
=(0,+ cosbcosd - i sing,
+cosfsing +icosg, Fsinb) (B2)
mey, (P)=E{|p|/E, - sinb cosp, ~ sinbsing, - cos®) (B3)

where p=(E,p), p?=m?, and the polar angles (6, ¢)
specify the direction of p. Both of the four-vectors (B2)
and (B3) have the same dimension ~ (mass), However,
the right-hand side in Eq. (B2) is a counstant times an
angular factor, while the right-hand side in Eq. (B3)

is proportional to E, Therefore, it would seem that
when E > m the helicity-zero function (B3) should be
much more important than the helicity-one function (B2).
If this were true (it is not) then it is easy to see that the
only important value of |x;!, the helicity of particle ¢,
would be 0 or z because }; is the sum of the helicity
labels on the ¢,’s, and only »=0 is important, Thus in
a kinematic region where all the E; are large the con-
clusion would be that only the smallest helicity labels
are important,

This is incorrect; we have ignored the fact that the
€nu are four-vectors, and important cancellations can
and do occur. In the s channel this is completely ob-
vious. There, large E; means large s (because E;
=V5/2), with { arbitrary. If the preceding discussion
were correct then all s-channel helicities would be
minimal at high energy, and of course this is not true,
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When the wavefunctions in Eq, (Bl) are contracted with
the tensors in the M function, many cancellations and
rearrangements occur and the end result is that all s-
channel helicity amplitudes have the same energy de-
pendence (this must be true). All of the extra factors of
V'S coming from E, in Eq. (B3), which a priori seem to
make ¢ more important than .y, disappear. Effectively
what happens is that cancellations cause these helicity-
dependent factors of Vs to be replaced by V7 or by one
of the masses m,;, When |¢| is not large no s channel
helicity label is favored over any other. However, when
[£] >>m?, then we can simply ignore all the masses,

and then cancellations can only replace Vs by VIZ[. Now
we can see why the large-1{?/| theorem exists. Small
helicities correspond to many factors of ¢; and there-
fore to many factors of E; =V5/2 which have to be
cancelled, When [¢{ is large these factors of E; be-
come factors of VI7[, On the other hand, large helici-
ties correspond to many factors of ¢,; and therefore to
many explicit factors of m,; <vII] which nothing can
cancel. The conclusion is obvious; small helicities are
favored in the s channel. This argument holds for each
invariant amplitude separately.

Things are 3 little different in the / channel. There
one can easily see that |/l must also be large if any
simplification in the spin structure is to occur, For ¢-
channel wavefunctions, the angle 6 in Egs. (B2), (B3) is
either constant (0 or 7) or it is the /-channel scattering
angle ¢, or 7 - 6;, depending on which particle is con-
sidered. The azimuth ¢ is either 0 or . Both sinf, and
cosf, are proportional to s for large s,

—isind, =cosb, ~25/Ty, Ty,

Therefore, no helicity is preferred over another when
s — =, However, when ¢! is also large, then E and Ipl
in Eq. (B3) are =VI7T/2 and it follows that ¢, is more
important than e,y., When the /-channel wavefunctions
are contracted with the tensors in the M function an
overall helicity-independent power of Vs gets cancelled,
and the f-channel helicity amplitudes all end up with the
same energy dependence (this has to be true), Because
masses can be neglected the cancelled helicity-indepen-
dent power of Vs is replaced by a helicity-independent
power of V1?1, the same for all helicity amplitudes, But
the helicity amplitudes with large helicities also con-
tain explicit factors of m; coming from the polarization
vectors (B2), while in the amplitudes with minimal
helicities there are factors of VI#| instead. No cancel-
lation or rearrangement can overcome the advantage
held by the latter amplitudes for large |/|, Therefore
the minimal /-channel helicities are favored,
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Properties of the matrix elements of baryon transition operators are derived from a minimal set of
assumptions about the algebra of observables. Poincaré invariance, SU(3) classification, and V-A

transitions are assumed. SU(3) is treated as a spectrum generating group rather than a symmetry group,
and the usual form factors are expressed in terms of form factors which are invariant with respect to the
spectrum generating SU(3). As a particular case, it is shown that the condition that the form factors be
first class with respect to the spectrum generating SU(3) does not lead to a vanishing pseudotensor

contribution.

INTRODUCTION

In this paper we present a fairly self-contained
derivation, from a more general viewpoint than usual,
of properties of the matrix elements of operators which
occur in one-hadron processes. Our framework is rela-
tivistic quantum mechanics, i.e., the hadrons are
described by an algebra of observables, and the basic
assumptions about this algebra of observables are that
it contains: (1) the algebra of the Poincaré group ex-
tended by parity, time inversion, and charge conjuga-
tion, /7*'; (2) the algebra of SU(3); and (3) a set of
vector and axialvector operators that have definite
transformation properties under 2% and SU(3) and
which describe transitions between different hadron
states. Since these assumptions are generally accepted,
we will derive results which are restatements of ex-
pressions that the textbooks on particle physics begin
with. The value of our presentation is not so much the
derivation of familiar expressions from fundamental
assumptions which are not burdened by field theoretic
apparatus, but the fact that these expressions can be
given in a modified version as a consequence of modi-
fied theoretical assumptions which lead to predictions
for experimentally measurable quantities that cannot be
derived under the usual assumptions. This will be the
content of Sec. IV, where we combine the spacetime
algebra of a spin- particle with the algebra of an SU(3)
which is assumed to be a spectrum generating group,
denoted SU(3)g, rather than an “approximate symmetry’
group. Sections I, II, and III are more pedagogical in
nature and constitute a preparation for the last sections.
Section I reviews the framework of our discussion and
gives together with the Appendix all the material that is
necessary for the following derivation, requiring of the
reader just the knowledge of the fundamental facts of
the representation of the Poincaré group and Lorentz
group as they are given, e.g., in Ref, 10. In Sec. II
it is shown that the matrix elements of Lorentz vector
and axialvector operators may be written in terms of
certain functions (form factors). Definite C, P, T and
Hermiticity properties are assumed for these operators
in Sec. III, and conditions on the form factors are de-
rived. Finally, in Sec. V we relate the SU(3)-invariant
form factors which were obtained in the previous sec-
tions to the non-SU(3)-invariant form factors that are
commonly used for data analysis.

’
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I. FRAMEWORK

The basis of a relativistic quantum mechanics for
particle physics will be the association of a hadron
with an irreducible representation of the Poincaré
group,1 This introduces as observables the generators
P,, L,,, v,u=0,1,2,3, of the Poincaré group with
their well-known physical interpretation. If we associate
with this algebra a Lorentz vector operator I', which
together with the Poincaré group generators fulfills the
following commutation relations:

(p,,P,]=0, (1)
(L,,, P, =i(g,,P, ~ 84, P.), (2)
(Luvs Lool =~ (8usLio + &ooLup = GuoLvs = &upluo)s  (3)
(M,,,S,]=0, (4)
FeuypaP M =0, (5)
[Suvs Spo) == #(8u0Suo + &0Sup = BucSus = BpSuc)s  (6)
(Lo, T, 1=1S,0, T =8(g, T, = £ouTo), (1)
(T,,T,]=~14S,, (8)
[P,,T,]=0,
where
Lu,=M,, +S,,,

b,v,p,0=0,1,2,3 and g4 =1, 811=8n=833=— 1, then
we obtain a relativistic symmetry?® . This®, which is
the semidirect product’ Pp, ;.  =S0(3,2)r, s, , We be-
lieve to be of fundamental importance in the relativistic
quantum mechanics of particle physics.’i'5 A well-known
example of this relativistic symmetry is obtained if, in
addition to relations (1)—(8), one requires

{FP’ ru}:%gac . (9)

The irreducible representation space #(m, D) of&, in
which (9) is fulfilled, is called the Dirac representation
and is identical with the space of solutions of the Dirac
equation. %7 //(m, D) is the direct sum of two equivalent
representations of the Poincaré group

Hm, D)= m, s =1/2)BH " m,s=1/2), (10)
where the additional label =+ 1/2 is the eigenvalue of

the operator P,M-IT'* (or of I'; for states at rest, since
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the energy p, is assumed to always be positive). 4 (m, D)
is an irreducible representation of the extended
Poincaré group; 4™ *(m,s =1/2) describes particle
states and 4"/ ¥(m, s =1/2) antiparticle states with
negative relative parity.

There are two convenient basis systems in the Dirac
representation, which are inherited from the corre-
sponding basis systems of the Poincaré group. The
canonical basis |pson) is labeled by the 4-momentum
p, the spin s(==1/2), the third component of spin o,
and the additional quantum number n. Under a Lorentz
transformation A, the canonical basis transforms asl?®

U |pson)=23 | (Ap) so'n) DA/ ¥ (R), (11)

where R is the Wigner rotation
R=L{Ap) AL\ (p),

L is the “boost,” L{p}p =(m, 0,0,0) and D5}/? (R) is
the matrix which represents R in the s= 1/2 1rreducible
representation of the rotation group. The generalized
basis vectors may be “normalized” such that

<pln,01‘ [)n0> 2p063(p p) b o' n'n H (12)
where we have dropped the s =1/2 label,

The spinor basis®? f(koc)j (p) is defined to transform
as

J'trpe)

U(A)fl(kOC)J (p Z f(k C)J (AP)DJSJ (A), (13)

where DJ;J(S 0 (A) is the matrix which represents the

Lorentz transformation A in the (kyc) representation of
the Lorentz group. For the Dirac representation,
Bo=1/2, ¢c=+3/2, and j=j"=1/2.1°

The spinor basis is not orthogonal, %% 1! and so
(f, (p)! does not transform contragradiently to lflg(p))
We may define a new vector [omlttmg the constant in-
dices k,,j, and using the ¥ matrices defined by (A5)],

FLO =@/ mpu v (FF (D) (14)

which does transform contragradiently to I_ffs(p)). Then
the normalization is given by

(75 (B | £5 (0D = 2p8%(p" = P) 0°° 55, (15)
and the connection between the two basis systems is

[pno) = | ££(p)) Do () (16a)
and

(pno| =D (pXF5 ()] (16b)

(repeated indices are summed). The transformation
matrices D, D play essentially the same role as the
usual positive energy Dirac spinors #, v and u, v re-
spectively. The relationship between the D’s and the
Dirac spinors is discussed in the Appendix.

By (16), the matrix elements of any operator J in the
canonical basis may be written

(alplnlo-l IJl pnoad
=De5, (b T 1912 1500 D), (17
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where o represents any additional quantum numbers
[SU(3), ete.] which may be present. We ignore these
additional quantum numbers for the time being and
return to them in Sec. IV. The transformation property
(13) follows from the fact that the spinor basis is defined
as a direct product:

fi(p)=£7,® f(p). (18)

The £ are the basis elements of the four-dimensional
representation space (1/2,3/2)® (1/2, ~ 3/2) of

S0(3, l)s , Which is an irreducible representation space
of SO(3, 25% r,» While f(p) is a generalized basis vector
of the (m, s =0) representation of the Poincaré group, 53!

Every operator which acts on a direct product space
may be written as a linear combination of direct prod-
ucts of operators; thus we write for J

J:Z.-‘/ I8 I,
where J§, acts only onf; and J&, acts only on f(p). It

will be seen that, for the cases we consider here,
i=1,2. Thus (17) may be written

(p’n’U' IJI I)n(T)
ij“:(p')2<f

2 (FNIH]F(o) DSl p).

(19)

Equation (19) will be illustrated in the Appendix by
showing how certain simple operators are evaluated in
both basis systems.

Il. FORM FACTORS

For the case that J=V, is a Lorentz vector, we may
write in general

V=2 (V{H,® V), (20)
H

so that the matrix elements of V,
are

U SNAL):

in the spinor basis

it

Since the matrix elements (f(p’) |V, | f(p)) are just
functions (distributions) of p and p’, we may write

:<72,53' NV (o) Vil |ff3>

YN VE AN, 1)

which is simply, for a given p’ and p, a 4X4 matrix in
the indices ¢, ¢’, j3, 7§, This matrix may therefore be
expanded in terms of the 16 basis elements of the Dirac
algebra:

c’c c’c
=a, (1)1313 + ll“a('yc,)jéj:s

e, 1 2
+ @, 0055, + a5 05y, + 0,5 (ros)is 5 (21a)
where the expansion coefficients a,, a,°, etc., are func-
tions of p, p’. In order that both sides of this equation
have the same property under Lorentz and parity trans-

formations, it must be that
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a, is a Lorentz vector,
a,” is a Lorentz second rank tensor,
a,” is a Lorentz third rank tensor, (21b)
a,’ is a Lorentz pseudovector,
a,*” is a Lorentz second rank pseudotensor.
Since these quantites are functions of the momenta,
we need the most general functions of the two Lorentz

vectors p’, p which satisfy the above Lorentz transfor-
mation properties. These are

a, =(pi—pu) F{ +(p| +p,) Fy, (22a)
a," =g, "Fy+p p""Fy+plp°Fy + p,p°Fs + pl.pFy,
(22b)

@, =g, (P +p°) F1+g, (p" - p°) F{

B (pL + ) Fy+ 0P8 (bl - ) F

+terms symmetric in p, 0, (22¢)
a,’=0, (22d)
a,% =€,%"p; py Fy, (22¢)

where the F’s are Lorentz scalar functions of p and p’.
Equation (22d) follows from the fact that no pseudo-
vector can be formed from the two momenta. In (22¢),
terms symmetric in p, 0 were omitted because 0,, is
antisymmetric. When the above quantities are used in
(21a) and (19), we obtain

(p'n'a’ |V, | pno)
=Dp5 (P WeuFY + uF{ + 7, Fy + pu¥e p™Fy

+PLYe D Fy+puYe pF5 + PuYe p F

+ ouu(koFY+ +q0F'I-) + 0op PUPm(uns- + kqu*)

+ 7575 €7 1§ po Fat i3, Dine (), (23)
where g, =p), ~p, and k, =p, +p,. The terms involving

Y. P" and v, p'° may be simplified by using the Dirac
equation (A22),

P ()55 Dol p) =mmDTo( p),
73737 I3 c 3 (24)
Dgg (p) pu ()5 = mmD5 (p),

where 7 =sgn(n) and m = (p,p*)/%. The result is

{p'n'c’ |V, | pno)
:15315:3(1"){%]‘] Tt 0L q s+ TVt TV s

+ ("'p;’; - Trpu)f(i + Ouv(n'p,v - wpy)f'(
+a'wy, fy +1'ng, fo + 100, ¢'f10

+ (”p;'t - ﬂ’pu )fﬂ + ouv(ﬂp’v - ”'pv)fﬂ}:;j;;D;;o(f)):

(25)

where the f’s are linear combinations of the F’s and

other Lorentz scalar functions of p, p'.1?

Equation (25) covers the general case where V,
causes transitions from p, »n, 0 states to p’, »’, o'
states. In practice, however, we rarely have this gen-
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eral situation.® Therefore, we restrict ourselves to
the case »’ =n. Then 7/ =7 and 77’ =1, so (25) now con-
tains only six functions:

A=fitfo Hha=fitfin Fo=fu+fs

A=fi+fs, i?z =f1+ /12 Fa=fs +fu-
If we define

Fi=fi+f;, i=1,2,3, @17)
then (25) takes the familiar form
(p'no’ |V, | pno)

= D35 (P Fi +0,,0" Fy + quFalifs, DT (p)

(26)

(28)

(no sum over n). However, we should emphasize that
these F;’s are not quite the usual form factors, because
by (27) they depend on z as well as p and p’. That is,
they contain a partf,- which is invariant under charge
conjugation C, and a part nf; which changes sign under
C. This is required by the fact that we have an ab initio
positive energy theory, and it will be discussed further
when we consider charge conjugation,

For the case that J=A, is a Lorentz pseudovector,
we must replace everywhere in (21b) vector, tensor,
etc., by pseudovector, pseudotensor, etc. No pseudo-
vector can be formed from the two 4-momenta, so we
have

a,=0, a,"=€, " pip, Gy,
auap = kreu oo G; + qteu e GE’

(”u5 =k,Gi+q,G;3,

(29)
- 4, =8,°Gy+p,p°Gs +pl, p°Gy
ThubGr+pLp"Gy.
By using
Y5 == (G/41) €y Y VY'Y (30)

we find that (30) leads to a form analogous to (25).
Under the restriction n=»', we have

<pln0’ iAu l pnoy
> ne’ ~ ~ . o~
=Da'j'3(f’){7u75 g1 75 8u83 110,750 &y

+ MY, Vs 4 TV qugs t Wi(’uo“"sqozrz};;jsD;go(.ﬁ), (31)

where the ¢’s are Lorentz scalar functions. " If we de-
fine G’s [by analogy with Eq. (27)] which depend not only
upon p and p’ but also n, G; =g, +7g;, then we may write

(p'no’|A, | pno)
= 1.)3'6;'3(17'){7’“ ¥5Gy +10,,0°Y5Gy + Y59, G3}5§13D;’;o(1’) .
(32)

In the foregoing, we have explicitly displayed the in-
dices on the transformation matrices D and D. This
served to emphasize that they are in fact matrices
rather than column vectors, as they are usually treated.
In the remainder of the paper, however, we will omit
those indices which are summed over and list the free
indices as variables, in order to simplify the formulas.
For example, instead of
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hd nt lcll cll
D:'}:ﬁ(p')(’)’u 7%;'3' ngg(P)
we will simply write

D(p’,n',0")7,D(p,n,0).

11l. CONDITIONS ON THE FORM FACTORS

The assumption of definite transformation properties
of V, and A, under the discrete transformations C, P,
and T puts restrictions on the functions F; and G; of
Eqgs. (28) and (32). The P-transformation property has
already been used in deriving (28) and (32); we now
assume that V, and A, are normal under time rever-
sal,¥ i.e., that

AV, AR =e(u)V,, ArA AT =e(n)A,, (33)
where
_ _y+1 for p=0,
6(“-)—" (1 —26u0)— {_ 1 for M :1’2, 3.

Like the assumption that V and A are vector and axial
vector operators, (33) is a restrictive assumption that
can only be justified by its experimental consequences.

In order to exploit this transformation property, we
need an extension of the Dirac representation of the
relativistic symmetry by T. We take for this the exten-
sion of the Poincaré group representation /(m, 1/2) by
P and T which is realized by baryons. 41 In that case
A, does not affect #, and its action on the states is?

Az|po; P, m,0) =)= 172 py, - p,n, - 0), (34)
where o(n) is a phase factor which may depend on #.
Then
(p'no’|AFV, Az| pno)

=(Arlp'na’), V,Ar|pno))

= (=17 P n -0V, -pn—-0), (35)

where we have used (34) and the antiunitary nature of
Az, According to (33), the lhs of (35) must be

:e(u)(p’n0'| v, I[mo)
S0
(p'n0’ |V, | pno)
=—e(u)(-1)""(-p'n -0’1V, ~pn -0 (36)

Writing the rhs of (36) in the form (28), we have, for
n’ =n,

—e(W)(=1°*"{-p'n -0V, —pn -0)

== G(u)(— 1)“0, lj(" P', n, - Ol)b/u Fl + icuuquZG(V)
+q.Fe(u)} D(= p,n, — 0). (37)

From the explicit forms for the bilinears (A49)—(A53),
we find the properties

(- 1)° D(- p’,n, ~ 0")(v,) D(- p, n, - 0)
=-e(n)D(p’,n, 09y, D(p,n, o), (38)

etc. Using these properties to compare (37) with (28),
we find
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Fi(p’sp)'_‘Fl(p"p)’ Fz(P',P):Fz(P',P);
Fy(p', p)=F3(p’, p). (39)
Similarly, for the axial transition operator A, we find

Gi(p”p) = Gi(p,,p), Gz(P':P) = Gz(P'aP),

G3(p,’P)ZGS(pI,p)' (40)
From the assumption that the V, and A, are Hermitian,
vi=v,, A, =4, (41)

we derive further conditions on the F;. Because of (41)
we have

(p'no’ |V, | pnoy = (pno 1V, Tp'na’). (42)
Using (28), this may be written
D(p'n0" Ny, Fy(p’, p) +i0,,q"Fy(p', p) + . F3(p’, p)} D(pno)
=D(pno)y, Fy(p,p") - i0,, ¢’ Fy(p, p')
- q.F3(p, p")} D(pno’). (43)

The explicit forms of the bilinears (A49)—(A53) may be
used to compare the two sides of this equation. The re-
sult is

Fi(p',0)=+Fy(p,p"), Fy(p',p)=+Fy(p,p’),
F3(P',P):—F3(P,p,)- (44)

Since the F’s are Lorentz scalars, they must be func-
tions of scalars formed with p’ and p. Thus they are
symmetric in p’ and p, i.e., F;(p',p)=F;(g%), where
g =(p’ -p)?, so that (44) may be compared with (39).
The result is

Fy and F, real,

Fy=0. (45)
The hermiticity of A, leads to similar consequences:
Gy(p",0)=Gy(p, ), Golp’,0)=~ Gy(p, "),
Gs(p',0) =GCy(p,p"). (46)

The G’s are also symmetric in p’, p, i.e., G;(p',p)
=G;(g?), so that (46) may be compared with (40) to
give

G,=0, G;and Gj real, (47

For physical reasons, the charge conjugation opera-
tor U, must have the property

U,|pnoy=a|p —n o), (48)

where a is a phase factor, and the relationship between
the U, and the Poincaré group is

vlP,U,=pP,, U}, U,=L,,. (49)
We may find the action of U, on T, as follows:
UAT U, | p=0, no)
= a(n) al- n)(- n)| p=0, no)
=-n|p=0,n0)
=-T,|p=0,n0), (50)

where we have used the unitarity of U, i.e., a(-—n) a(n)
=1. Thus

Udr,y,=-r,. (51)

Moreover,
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UIT,U,|p=0,n0)
=am) Ul |p=0, —n 0)

= aln) U Z) [p=0, —n’ 0"Y=n'0’|T;|-n o)

-n’,

=aln) 25 a(-n)|p=0,2"0"Y~n’ ¢'|T;{-n o).

.
-n‘, 0’

(52)

The matrix element of 2T, is (¥;)%", which is given in
Eq. (A4) of the Appendix. Thus

=a(n) E a(=n')|p=0,70) 5y (= $i0)yrs

-,

=a(n) a(n)? |p=0, —no")(- 3i0})p%

=[am)Pr;|p=0,no)

so that
U U, =[am) P 1. (53)
Using (49), (51), and (53), we calculate
UAP, T U, | pno)
=-{P I~ [a(n)} P,T}| pno). (54)
On the other hand,
UAP,T*U, | pnoy =U3P,T* aln)|p —n o)
=a(n) a(- n)(~ n) m| pno)
=~ P,T* |pno). (55)

In order for (54) and (55) to be equal, it must be that
[a()] =-
This and the unitary of U,, a{n) a(~»n)=1, imply that
aln) =xisgnn. (56)
We may choose the + sign for convenience.

The V, are assumed to have the following C-trans-
formation property:

U,v,Ul=+cV,, (57)
where ¢ is a phase, Like (33) and unlike (49), (51), (53),
(56) this is an additional assumption. From (28) and (57)
it follows that for n’=n,

5o’ |V, | pnoy =+ (p7 —n 07|V, |p —n )
= +cI°J(p’ -n o) {Fy(-n)v,
+Fy(~n)q,}D(p —n o).

+iFy(-n) 0,4

(58)

From Egs. (A49)—(A53) we see that under the change
n—~mn, the bilinears D(p')D(p) and D(p )o,,D(p) do
not change sign, but D(p') ¥, D(p) does change sign,
Thus by comparing (58) and (28) we find

Fyln)==cF(-n),
Fa(n) = +CF3(" n).

Fz(n) :+CF2(— n),
(59)

These relations serve to restrict the number of arbi-
trary functions in (26). If, e.g., we choose ¢ =+1, then
according to (27) and (59) we have
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Fy(n) = sgn(n) fy = - Fy(~n),
Fy(n) -——f~z =Fy(-n),
F3(n) —f3 Fg('- n)

We are thus left with only three arbltrary scalar func-
tions of the momenta, f,, fz, and f;, which characterize
the matrix elements (23)

(60)

For the axial vectors A, we assume the C-transfor-
mation property

UAU=dA,, (61)
where d is a phase. In the same manner that we ob-
tained (58), we now have
(p'no’|A,|pno)

=dD(p’ —n 0"){Gy(-n) v, 75 + Gy(-n) 0, 75

+ Gy(~n) g, 75} D(p —n 0). (62)

From Egs. (A54)—(A58), we see that under the change
n —-n, the bilinears D(p’)0,,v; D(p) and D(p’) vsD(p)
do not change sign, but D(p’)y,¥; D(p) does change sign.
Thus

Gi(n) =-dGy(~n),
G3(n) =dG3(— n).

As before, we may thus characterize the matrix ele-
ments (31) with only three arbitrary scalar functions.
By choosing d =+ 1, we may write these in terms of the
functions in Footnote 14.

Gy(n) =dGy(~n),

(63)

IV. SPECTRUM GENERATING SU(3)

So far we have investigated the matrix elements of
vector and axial vector operators V,, A, in the Dirac
representation space of the relativistic symmetry. The
physical system that could be described by this repre-
sentation space would be a particular fermion—anti-
fermion system. We shall now extend our description
to the case where the physical system consists of a
multiplet of baryon—antibaryon systems (whose exter-
nal properties are assumed to be described by the Dirac
representation). Though this formulation can be given
for any group which classifies the baryons, we will
choose SU(3).

Thus we assume that the space of physical states is
the direct product space of the representation space of
an SU(3) multiplet (octet) with the Dirac representation
space:

VD, 1)@ 45(m, D).

It is generally well accepted that the transition between
different baryon states, as they occur, e.g., in the
semileptonic decays of baryons,

(64)

baryona —baryona’+ lepton pair lv,

are described by SU(3) octet Lorentz vector and axial-
vector operators. We will, therefore, investigate the
matrix elements of SU(3)-octet Lorentz vector operators
V.# and SU(3)-octet Lorentz axialvector operators Af.1
A basis system in this space is given by the direct
product of the usual basis in A/5"® and the canonical
basis system in /°=/{(m, D),
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|pno, a) = | pno)@ | a) (65)
where @ represents I, I, Y.

Remark: Instead of the canonical basis system one
could also have chosen the spinor basis system

|£5(p), @) = £5 (p)e | ). (86)

As long as no further connection between SU(3) and the
spin SU(2) or the SU(Z)s“ is assumed, there is no rea-
son to prefer one or the other basis system.

If SU(3) is not a symmetry group, but the mass is a
function of the internal quantum numbers o,

m=m(a), (67)

then the space of the physical system will not be the
direct product space (64), with only one mass, and we
can no longer assume that P, commutes with SU(3). In-
stead of the relativistic symmetry@,, L,,T, generated
by the momenta P, and L,,, T, one may consider a
relativistic symmetry generated by operators that do
comniute with SU(3). As an example we will assume that
the velocity

P,=p, M (68)

and L,,, I, commute with the SU(3) which classifies
the particles, i.e.,

r,,c,,.r,, SUG)I=0. .

Here@P r. denotes the relativistic symmetry gen-
erated by ﬁ;,Lw, T, {these fulf111 the same algebraic
relations (1)c°°(8) (9) as P,, L,,, T, if one asummes
that [T, , M]=0}, and SU(3)E denotes the SU(3) which
classifies the particles and which is now considered to
be not a symmetry group but rather a spectrum gen-
erating group. Although there is no direct evidence

for assumption (69),® it is not in evident contradiction
with reality as is the assumption of an SU(3) symmetry
group, i.e., the assumption that@PurLuwru commutes
with SU(3).

By assumption (69), the space of physical states can
be taken as the direct product space

H=H505(1, 1) #€00 =1, D) (70)

where /—/&'s(m 1, D) denotes the Dirac representation
space of & (the eigenvalue of P P*=1). The proper-
ties of /S are analogous to those of /€. Instead of the
canonical basis of generalized momentum eigenvectors,
one has the canonical basis of generalized velocity
eigenvectors |pno):

P, M| pnoy=p, | pno), (71)

where p, =p,/m. Correspondingly, there is a spinor
basisfj"3 (p). A basis system in /4 is then given by the
direct product

| pno, @)= | pnoy®|a). (72)

After these preparations, our problem can be stated
as the investigation of the properties of the matrix ele-
ments of the SU(3)z-octet Lorentz vector and axial-
vector operators V,§, A} between the basis vectors (72).

Since V£ is an SU(3)g-octet operator, 1
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(a’p'n'o’| V2| pnoa)
=C(11,11,11,y=1;a8a’) {p
+C(11,11,11,y=2; apa’)(p'n'c’ | Vi®| pno).  (73)

e [Vi0 o)

The two reduced matrix elements {$'n’0’ | V,*® | pno)
define two operators V,%*? in the space /#/°.%° We may
apply the results of the previous sections to these
operators with only the modification of replacing p by
5, since the V'@ are operators in //€ rather than 4,

Thus we have
([3'720’ ] V,ff"” )Zm@ :D(ﬁ'nc'){quY'd’(ijz)
+10,, ' FS (@) + 4, F7P @)} D($no), (74)

where §, =pl/m’ - p,/m and D(p)=D(p), i.e., the D(p)
are functions of the velocity only, as seen from Eq.
(A11).

We shall now derive properties of the F{*'#’ (%) which
follow from assumptions made for the V2. First we will
consider charge conjugation. The charge conjugation
operator should have the property

Uc]ﬁnoy a>:a(n)lﬁ -no, a)
The derivation of
aln) =isgnn

follows almost exactly as before, except that in calculat-
ing Eq. (56) we need

T, |pno, )= |p —n o’ a)o'|T,|0).
por
That is, since n and « are coupled, I',, must change

atoa=-caas well asn to - n,

We assume the following C-transformation property
for V25

USAVIU, =~cV,", (75)

where ¢ is a phase factor. The matrix elements of
(75) in the canonical basis are

<O[ fplnlol ] Uc-l VI-LBUC | pnoa>
=(=a’p=no’ Vi p-no-a)
==~cla’p'n'o’| V*| pnoa). (76)

Since the V! are octet operators, we may use {73) to
rewrite (76):

Z C('y; —a,pB, - a’)(p’ -’ 0,’ V(r)lp —-n 0)
rel,2 “

=—c E Clr;a, =B, a’)p'n'o’| Vi™| pno). (77)
[Instead of V"’ and V,? we use the notation V™1, y 7=

respectively. ] Using the property of the Clebsch—
Gordan coefficients that

Clr=1a, -B,a")==Cly=1;-aqa, B, -0'),

Cly=2;a, -g,a’)=+C(y=2;-a, B, -a'), (78)
we see from (77) that
(p'=n’ o' |V V| p —n o)

= C<p’n’cl | Vlfy=1) l p’l0>!
(" =n' o' |V | p —n o)

== c(pn’c’ | V8| pna), (79)
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, that the V,}” satisty

Uc-l Vu(hi)Uc =c Vu(hi) , (80)

USAV DU, =~ c V=D, (81)
According to (59) we have from (80)

FV () = = cF{™ (< ),

F{* () = cF{™ (< n), (82)

F3(7=1) (n) — CF3( ’/:1)(_ n)
and likewise from (81)

F1(7=2)(n):CF1(7=2)(— ),

Fz( 7=2)(n) — CF2(7=2)(_ n)’ (83)
F3(7=2)(n) —_— CF3(7=2)(_ n).
Since ¢ does not depend on n, relations (82), (83) [just

as relations (59) did] will restrict the number of arbi-
trary functions needed to characterize the matrix ele-
ments of V2, U, e.g., we choose ¢ =+1, then by (27)
we have

Fiu)( )= sgn(n)f“) Fz(l) (n) f“),
F;“(n) :ftl) Fi(Z)(n) _f(Z) (84)
FP () =sgn()f?, F (n)=sgnlm) 2.

if we assume for the axialvector operators,
U,=~dA, (85)

then we obtain
Gi(7‘=1)(n) : - dG‘(‘Y:i)(__ n)’

Likewise,

USAE

Gz(h“(n) :dGz(h“(- n),
Ga(hi)(n) — dGﬂ(y:i)(__ n)
and (86)
e (7=2)(n) =dG (7:2)(_ n)
G (7'_2)(”) =—dG (7—2)(_ 72)
G3(7=2)(n) —_ ng('r:Z) (__ n).

Besides the above assumption for the V,/, AS we
assume that they have a definite A p-transformation
property:

ApVEAr=e(n) VS, ApASA =e(u)Al (87)
and a definite Hermiticity property
Vuﬂf = V‘:B’ ABT B (88)

We will call V£ and A} “first class with respect to the
spectrum generating SU(3)” if (87) and (88) are ful-
filled., This is in analogy with the first class condition
when SU(3) is a symmetry group.

Since A, does not affect the SU(3) quantum numbers,
condition (87) leads by the same arguments as given in
Sec. III to [see Eq. (39)]

PO =FHGD), i=1,2,3. (89)

Similarly, for the axialvector operators we obtain [see
Eqg. (40)]

G{(f,d)(a,Z) — éi(f.d)(aZ),

We now use condition (88) to calculate

i=1,2,3. (90)
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(@'p'n'o’ | V| pnoa)

={apno |V F1 p'n'o’a’)
=C(11,11,11,y =1; ¢’ = Ba) (pno (VI | pin'a’y
+C(11,11,11,y=2; o’ ~ Ba) (Puo| VD | p'n’a").
(91)

Comparing (73) with (91) and using the property of the
8U(3) Clebsch—Gordan coefficients,

C(1,11,11,7; 0’ — Ba) =C(11, 11,11, y; afa’), (92)

we obtain

(p'n'0’ | V90| B0y = {Fno | VID | pryicr, (93)

(93) is the same as relation (42) of Sec. III (stating that
V.9 are Hermitian operators) and so, by the same
arguments as given there,

FE2(H,0) =FH2 (9,
FEO(, B ==~ FHO((- g)).

Likewise, the same calculations done for the A% yield
[see Eq. (46)]

Gi(,fgd) (f),) .5) =
GIO (B, )=~ GO . 2)
an

(94)

S (=)

Then (89) and (94) together with (90) and (95) lead to
F5® real, P9 =0, (96)
G{#® real, GH¥=0. (97)

It is essential to remark that the above argument only
holds for the F{"*(§?) and G/ (3%) in the matrix ele-
ments between velocity eigenstates, and not for the
usual “form factors” which appear in the decomposition
of the matrix elements between momentum eigenstates.
The reason for this is that, under assumption (69), the
reduced matrix elements {p’n’0’ | V¢ | pno) do not
depend upon SU(3) quantum numbers, whereas the cor-
responding reduced matrix elements {p'n’c’| V% | pno)
that appear in the matrix elements between momentum
eigenstates

(o thtptat ‘ Vuﬁi pnoa)
=27 C(11,11,11, y; aga’)p'n’c’ | " | pno) (98)
e

do implicitly depend upon the SU(3) quantum numbers,
so that expression (98) cannot follow from the Wigner—
Eckart theorem.

V. COMPARISON WITH NONINVARIANT FORM
FACTORS

In order to compare this theory with the experimen-
tal data, it is most convenient to derive formulas which
relate the SU(3) invariant form factors F;, G; to the
usual form factors f;, g;. This is because the data has
traditionally been analyzed in terms of f;, g;, so that
analysis programs written in terms of those form fac-
tors are already available., To derive these formulas,
we will calculate a physical quantity (the decay rate) and
compare the result to the conventional expression. The
assumptions that we shall make will be mentioned as
they are needed.,

A. Béhm and R.B. Teese 1440



We assume that the process is weak in the sense that
the part T of the Hamiltonian which is responsible for
the decay causes a negligible level shift. The initial
decay rate is then given by (lowest order perturbation
theory):

T=212 2, S(Eu - E,) T, (A|W(0)|A")Y Ty, (99)
b AA

where W(t) is the statistical operator that describes the

ensemble of decaying hadrons,

Tps = ‘ T1A>, Ty = <A"T!b>-

I Ay, IB), ~+- denote the eigenvectors of a complete
system of commuting observables (CSCO}, la), 1b), *=*
denote the corresponding free eigenvectors [i.e., la)
denotes the eigenvector of the CSCO for T =0 that has
the same eigenvalues as |A), This is always possible
when the level shift can be neglected], Y 44 Means sum-
mation over all the eigenvectors of the CSCO, and },
means summation over all those eigenvalues whose
eigenvectors span the space of final states that are ob-
served. The sums in (99) are discrete if one chooses as
the CSCO a set of operators with discrete spectrum. It
is often more convenient to use observables with a con-
tinuous spectrum for the description of the experimental
situation. In particular the momentum or velocity is an
observable which is easily accessible in an experiment
(though a physical system cannot be in an eigenstate of
this observable). If we choose the vectors | A) to be the
generalized eigenvectors of the momentum operator,

| A) = |AA),n,) (100)
with the normalization
Fna |0 = 2B WS = p0

E(p) = (m* +p)V2, (1007)

where 11, denotes the eigenvalues of the other observa-
bles that together with the P{*’ make up the CSCO, then

_ dp
?-é S (101)

For reasons which have been given in Sec. IV and
which will again be discussed below, we may want to
choose generalized eigenvectors of the velocity opera-
tor P,/M rather than the momentum operator, i. e. ,
choose the canonical basis vector (72) of Sec, IV:

| 4)=[par i) = | proc). (102)

[It may, of course, happen that the 7, in (102) are the
same as the 17, in (100). This will be the case if the set
of commuting observables whose set of eigenvalues is
74 commutes with P, as well as B,. ]

The normalization of the eigenvectors is conveniently
chosen:

@'p| By =2E @ (- ) O3z, (1027)
where

E(/;): (1 +/,2/m2)”2.
Then

AZ :Z;}) de/Z/ZE. (103)
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We assume that the eigenvectors | A} are baryon
states, i.e., that they are the canonical basis vectors

| A)y=|p,n,0,0a), (104)

which were discussed in Sec. IV. The baryon has a
definite mass which we assume to be a function of the
SU(3) quantum numbers a(=1,1;, ¥ and the Casimir
operators), and the decaying baryon state W(¢) is pre-
pared to have definite internal quantum numbers « and
n=3%. If the polarization has not been measured in the
preparation, one will have to average over 0. The
statistical operator of the decaying system is then

W) =32 [(&k/2E,) [(@°k'/2E,,) |knoa)(aonk’)|

xp(R)B(R'). (105)
Instead of the generalized eigenvectors | pnoa), one
usually uses the generalized eigenvectors | pnoa) of the

momentum operator P,. In that case one has, instead of
{(105),

W= %? [ (@r/2E,) [(@F'/2E,.) | Enoa){aonk’ | ¢p(k) G (k')
(108)

As long as the observables whose eigenvalues are

a(l, I, Y, **°) commute with the momentum, the |pnoa)
will exist and (106) will be equivalent to (105). If, how-
ever, one of the operators whose eigenvalues are «,
e.g., the Casimir operators of SU(3);, does not com-
mute with P,, then | pnoa) does not exist. Therefore,
under assumption (69) we use the generalized eigen-
vectors (104) with the normalization (102’), This will
be the case for the baryon octet,

If we use the normalization (102’) and the measure
{(103), then the requirement that W be normalized,

Trw=1 (107)

can be written as

Trw=72, [(@k/2E,aonk| W|knoa)

=2 I (d3§/25k)§§) J@k/2E,) [ @k /28,.)
x{aonk | 'noa)aonk” | knoa) p(h’) (")

= [(@®k/2E,) | ¢(B) ]| =1. (108)
The physical meaning of the distribution function ¢(p)

is that [¢(p)I? is the probability that the momentum val-
ue of the decaying particle is p =mp. For the idealized
case that the system of decaying particles is prepared
to have the exact momentum p, the probability (¢(p)[?
will be zero unless p=p;. In the normalization (108) this
is expressed by

|6(3)|* =28, 8*(B-B,). (109)

If we choose the generalized eigenvectors | pnoa) for
I A), then we obtain the decay rate by substituting (105)
in (99) and using (102’):

I'= znbz ;2; S @R/2E )R /2E,.) 8(E, ~ E,) ¢ (&) $(3’)

x| T| Tnoa)anoh’ | T|b).
{110}
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We have so far only specified that the decaying state
is a one-hadron state with s =% and definite n, o. We
now consider in particular the process

o —~a'+1+7,

where o, a’ are baryons and [ is either an electron or
muon. For the vectors b we then have to take

[)=18n="+3,0,0)®|p,,n=+140,0a,
®'{)g,n=— 5 O Op)y
which we abbreviate
10)=p" 0%y, 15 5, P
We normalize the lepton states in the conventional way,
i.e., according to (100’). Thus ¥, becomes

D=L [@/2E)dp,/2E) @ 287, (111)
05, 01,0°
Using this, (110) becomes
_ dpy dp, d°p’ d*k  d%
T=v 2 | 5% 35, 287 ) 3%, 3%,
X 8(E; + E, + E' = E) p(R) 6 (%"
X', a’s pi, 15 05, V| T ka)a® | T| 37, @75 py, 15 0, 7).
(112)

The calculations leading to (112) contain only well-
accepted principles of quantum mechanics applied to the
case where the P, =P, M-t rather than the P, commute
with the other observables They have been given here
in order to show that there is absolutely nothing
mysterious about the velocity eigenvectors |5, a) and
that under assumption (69) it is advantageous to use
them instead of the momentum eigenvectors | p, a).

We will now specify the operator T further. We as-
sume that T conserves total momenta. * Its matrix ele-
ment may then be written as the product of the momen-
tum 8 function and a reduced matrix element:

<Z)’ a’;p,,l;p;,;iT'k,OO

=8%p' +p, +p5 - BX(Q'ID|T|a)). (113)
Inserting this into (112) and using 8%(p) =m™383(p/m)
gives

_ d’py dpy d°p’ ' B
T=12 | 55 3% af OE-E-E-E)
X(b(p +p +P (1)2<<"1 al.p lp-;
m _T ok e bt by,
7| Bittet ! a>> :
m
where

| €atw| Ty |2 = a2 | T o)y (a | T a’1V)).

This can be brought into a familiar form if one makes
the idealized assumption that the ensemble of decaying
baryons has a definite momentum p. Then l¢ 1?2 is given

by (109), and we obtain
a3 3
— pl d’pp dp Ah o h? —p. — P
I'=n 2E, 2E, 2E 2 Mp=p" b= p9)

1

XW ﬁ l«ﬁ”a,;plyl;pﬂy—l;thi)’a»P' (114)
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The decay rate is conventionally calculated using the
momentum eigenvectors (100) rather than the velocity
eigenvectors (102), By carrying out the above calcula-
tion using (100) and (100’) rather than (102) and (102),
we obtain the conventional expression?® (except for ir-
relevant normalization factors of 27 to some power or
different normalizations for the lepton measure):

dﬁp_ d3p/
= dl Sl
T 2027y f 2E, 2E; 2E’

x 23 8p-p'—p,-pp)

Spins

1 —
55 | Ko et 0y, Lps, v T by e |4 (115)
By comparing (114) and (115) we see that we may make
the identification?
1 : A — -
T E (“7) |<(p’,a';p,,l;p;,V{T|p, C¥>>i2

spins \ M

:—ZTZI;;S “l?;s l((p',ot’;p,,l;p,-,,TIIT[]),oz))]2. (116)
The difference between (114} and the conventional ex-
pression (115) is that the conventional invariant matrix
element is a function of the momenta of the baryons
whereas in (114) it is a function of their velocities, and
this results in a factor of 1/mm’.

We now have to specify the operator T further. We
do this in analogy to the usual V—A product form of the
weak interaction. We assume that the matrix element
of T is the product of a leptonic part and a hadronic
part. The leptonic part is given by the usual V—A
matrix element for leptons, i.e., the lepton pair is
treated as noninteracting particles {lowest order
perturbation):

<<,5’a a’;p,,l;p;, D‘ T‘ ﬁa Ol>>
=u(p) v* 1 =%;) o(pp)(pra’ | Hy | o)),

where we have used the conventional notation for the
lepton spinors. The conventional expression is the same
as (117) except that p, p’ are replaced by p, p’.

(117)

We assume that the transition operator in the hadron
subspace H, is the sum of a vector and axialvector, and
further that it is the sum of the V¥, A} of Sec. IV with
weights C(a):

Hh::g? C@) (Ve +A2). (118)
If we take V, A, C{(a) to be dimensionless, then the
constant g which expresses the strength of the inter-
action has the dimension of mass, because the reduced
matrix element {{IT 1)) has the dimension of (mass)®.
For a Cabibbo-type model, one would choose C(x 1)
=cosb,, C{t2)=sinb., C(x3)=0, where 6. is the
Cabibbo angle.

Finally, we use (73) and (74), and their analogs for
A%, to write

(pra’|Hy| payy=(P',n' =4, 0",
= gD(B’, L, 0"y, Fy¥(G0) + 0,8 Fy® (3%
+F G + GG + i @56 @)
+8,75G* @ D(p, 3, 0),

'|thﬁ,n:%,0',01>

(119)
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where we have used the abbreviations

F (@) =ZBD C(B) 2" (3*)

:ZB) c(® 2 C(11,11,11,7; aBa’) F, (32,

r=1,2

G**(@) =ZB) C® G @)

:ZB) c(B) 2o c(11,11,11,y; apa’) G;"G*).
r=1,2
(120)

On the other hand, the conventional expression for
the hadronic reduced matrix element is of the form

(pra’| By payy=(G/V2)a(p)) s @)
+0,,4" g0/ m +q, f,**g%)/m
+ 175817 @0 T 0y vse’ g2 ¥ @)/ m
+ 4,758 g?)/ mbu(p),
(121)

where m is the mass of the decaying baryon, £;%"*(¢%)
=3.CB)Yf;*®*(¢"), etc., and C(B) as in (118), could be
the Cabibbo factor.

The leptonic reduced matrix element is the same as
that used in (117). Thus for both cases, the leptonic
parts of (1186) are

2 {ulp) (1= 7)o 55) v(5) v (1= ) ulp,)}

apins

== 8(py ph+pI - &D, Py + i€ (p,), (15),).  (122)

Since the leptonic part (122) is the same on both sides
of (116), we may use the abbreviation (lepton part)** to
represent the term given by {122). By using (119) and
(121) we may then write (118) as

7(1/m’m)*(lepton part 35 [D(p’, 3, 0" {rFy™™
spins

o0+ G vs G2t D(D, £, 0) D(p, 5, oMy, Fy®®
+o o0+ G, Y G D(P, 3, 0)]
=(1/2(27)°)(lepton part)* 5 1G[ul(p'Hrf®™®

sSpins
+ et g™ /mbulp) ul My

o g, G/ mbu(p’)]. (123)

By using the projection operators (A59) and the con-
ventional projection operator for the Dirac spinors, %

E Uy (f))aﬁ(p): (ﬁ + m)aB’

2pin
we may write (123) in terms of traces:
m(lepton part)* (1/mm’)*g? Trl(y, F3*"®
oot G F+ D, F
e 7T + 1)
=[1/2(2m)*](lepton part;G* Tr((r, f;*™
+ ot g,y 8% /m) (B + m)
x uft™ e e et gy B2/ m) (B +m')]. (124)

By evaluating the traces in (124) and comparing the two
sides of the equation, one could find relations between
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the two sets of form factors. Instead of doing that, how-
ever, it will be much easier to define new functions
(we suppress the &’ indices):

FH1=F1+2F;, Gy=G;
Fr==F;~F;3, G3=~G,~ Gy,
Fs==Fy+F; G3==G,+Gy
and
/ 1=fitm+m)fy/m,  gi=gi+m' —m)gy/m,
{2=—frfs
/ 3=—f2 713 F3==8 &3
Inserting (125) and (126) into (124) then gives
m(lepton part)™ (1/m'm)*g Trl(r, 71+ b o +5{ 7
+ Y51 + PG + BvsG ) B+ 1) T
+ o BG) (B + 1))
=[1/2(27)%](lepton part)™ (m’m):G? Tr{[y,\/, +13x(m/2/m)
+ B m’ f3/m) + Vi¥sgr + Drlmgy/m) + B (m"gy/m)]
X(;+1)[n71 +o oo+ plmG ,/m)l}, {127)

where we have used #=mf and #’ =m’#’ in the rhs. By
inspecting both sides of (127) we find

w(z/m'm) 3y =[1/2@n P ) mTnr (GHEN L),

w(g/m'm) Fo=[1/2@0)]Vm"m (G/V2)mf,),

(g/m'm) 75 =[1/2@0F [Vm"m (G/V2)(m'{y),

(¢ m'm)Gy=[1/2@0) Wm'm (G/V2)(z),

1(#/m'm) G, =[1/2Q@uP Vm’m (G/V2)(mg,),

T(g/m'm) Gy =[1/2@nF Wmm (G/V2)m'g;).  (128)
From these we obtain, by using (125) and (126) again,

3/2 2
fla'a=(27r)4 _g (m% ) {Fia'a'Fanla(Z— (m +m’) )

m 2mm!

2 2
ata M =M
*Fs 2mm’ } :

(125)

For=—81~ 83 (126)

B a2 (2)
J m'm
X{(m'-f'm)an'a + (m’ - m)Fsa'a},
62 a2 2\
m =Ar G \m'm
X{(m" = m) F,*"™ + (m! +m) Fy*"},

R 4 2 3/2
a'e 4
£1 - (2‘”) G (Hl'ﬂl)

. . 2 _ i Y
X{Giaa+czaam m _03(”1 m)},

2mm’ 2mm’

gza'oz_ 4z< 9 )5/2
m =dn G \m'm

x{(m’ +m) G,*** + (m’ — m) G},

gsa'a_ 41(&_)5/2
m AT G \m'm
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x{(m’ ~ m) G,*** + (m’ + m) G3*"}. (129)
We thus see that condition (97) does not require g, to
vanish except in the symmetry limit,

APPENDIX

In this section we give a brief derivation of the trans-
formation matrices D and D. The Lorentz transforma-
tion properties (11) and (13) mean that we may write

| pno) = U(L1(p))($ (= 0) ® |n0)), (A1)
FE(D) =F(p)SSF,, (A2)

where ¢(p) and f(p) are generalized eigenvectors of P,
in the (m, s =0) irreducible representation of Pp , ,
and In,0), f{ are basis vectors of the four-dimensional
(1/2,3/2)® (i’./z, - 3/2) representation spaces of

50(3, 1)%5” and 8O(3,1)s,, , respectively. ®

For the special case J=I, =/® I'{ and p=0, Eq. (19)
becomes, by using (A1),

o' [T [ |n0) =Dy, ) (72T ££) DTe(0), (A3)
i.e., we see that D(0), D(0) transform the ¥ matrices
from the spinor to the canonical basis. By using the
facts that (1) n is the eigenvalue of I'j for p=0 in the
canonical basis, (2) I'y transforms between the c=+3/2
and ¢ =— 3/2 states in the spinor basis, and (3) I'; is a
vector operator in a known representation space of
S0(3, 1), it is possible to explicitly determine these ¥
matrices (as done in Ref, 6). In the canonical basis,

we find

@'o [Ty |n0) = (vl
CAN

n=1/2 n=-1/2

= g 0 n=1/2 , (A4)
0 =854 n=-1/2
n=+1/2 n=-1/2
0 (Ui)an" ':+1/2
(idow =1 (0,)g 0 n'=-1/2
CAN
while in the spinor basis
., o
<fjc'3 2T, lffs> = (7o) jécf§
SPIN
c=+3/2 ¢=-3/2
_ 0 Gflsia c'=+3/2
51313 0 c'=-3/2"
c=+3/2 ¢=~3/2
(7;)5;3 _ 0 =00 c'=+3/2
- ’ (a5)
s (‘7:)1313 0 c'=~3/2’
where the 0; are the usual Pauli matrices:
{01 0 -i 10
0y= 1 0/’ °z= i 0 s O3= 0 ~-1/" (AG)

The matrix which relates these two sets of ¥ matrices
is easily found to be (within a phase)
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n=+1/2 n=-1/2

1-4¢ ;
DZ"(O):T 5’3" G _lz)

c=+3/2

c=-3/2 (A7

and
B(0)=D"(0), (A8)
since D(0} is unitary.
For general p, we have by (16) and (A1),
| £7()) DT (p) = | pno)
= UL (p))|p=0,70)
= UL (p))| £7,(0)) DF5(0), using (6), and

= | AN DYV R LA (P DT (0), (A9)

by using (13), so that

;"3'0(1;) =D3..;j23”2“’0°’(L“(p)) D,""30(0).

(A10)
By using explicit expressions for the ky=1/2, c=%3/2
Lorentz transformations, ¢ (A10) may be written in
terms of the ¥ matrices (A5),

Do) =C (145, 770535 Dl (0), (A11)
where p, =p,/m and
c=[200+5)12 (A12)

However, we do not obtain 5( p) by taking the adjoint
of (A11). To see this, we first write, using (A1),

(p’nolfj°3(p)>
=(3(p=0)|® o |UL(PN| £}, (6D

=(6(p=0)[® (o |U'(p")® U (p)| 1)@ | F(p). (A13)
Letting U¥ act on ¢(p=0) and U’ onff, we have

=" (p") | oo | £5) DL 50 (L (1),
where ¢’ is a phase factor which may arise from
different normalizations for ¢ and £. But (¢(p") | f(p))
= ¢"2po5*(p’ — p) and (o i) :1')353(0), so that (defining
¢ =¢'9")
(p'n|F5P)

= D75 (0) DAV X RO (L (") 20,80’ - D). (A14)

Using this we may expand | ffa( p)) in terms of | pno).
Carrying out the trivial p integration, we have

|75 (60 = | pmo) DI, () DY XML (). (A15)

Thus the scalar product of two spinor basis vectors is

1
SR = |0 Dl ML) D5 )

X(p'n'o’| pno) Digy 0) Dy 1/ 40 (L (p)). (a16)
Using (3) and the facts that D(0) is unitary and
DI/BTHRN(L) is self-adjoint,
33
172 1/2(kye) ,
=Dy, (L (D) L(p)) 2p65°(p" - B) 8,
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and, using an explicit form for the boost, %8
= (Buri?* )55, 2000°(0" - )

where the ¥ matrices are given by (A5). If we define
new vectors f according to Eq. (14), then Eq. (A16) be-
comes the same as Eq. (15):

<);f'3‘(1") ‘ffz(f’» =2pe8°(p’ — P) 0 8y .. (15)

Using definition (14), the transformation equation
(16a) is unchanged,

| pnoy =1 £5 (2 DT (p), (A162)
but (16b) becomes

(pno| =Digs (D) (Bur*v0) 55 | £ (O))- (A16b)
Now

(pno|=(|pno)" ana (£ ()|=(l£5(eD)  (A1D)
so from (A16b) we conclude that

DT (P = D5, () Bu ¥ ¥0)5 (a18)
or

bg5.(p) =i Y Burer )i (A19)

Using (A4), (A5), and (A11), we may write this as

D5, (8) = (rolae DAY Oro),
SPIN
or, using (Al11),

=C D:;;i (o)(6°’°6,. + (yor* p,,),,, ). (A20)

It is easy to see that D and D satisfy the Dirac equa-
tion, For example,

P,T*| pno)=P,T*| 7£ (p)) Dfe($)
=@Fe e T)) | AP f7) DT (1)
=2 |£5 (0D (0 7*)555, DTu( 0.

But, since P,I'* is Lorentz invariant,

P,T* | pno) = smnu | pno) = gmn | £ (p)) D%e(p)  (A21)
so that
(pu?* D?",(p) m D,',(p) (A22a)
Similarly, we find
D5 (0)(puy )5«;33:nmi):§3(p). (A22b)

From the above, in particular (A11), (A20), and
(A22), it is apparent that the D"“”"(p) are essentially
the Dirac spinors #§ (p,0) and DS'“Z'C(P) the 5 (p, 0),
while the D, m {p) are the u and — v. We will display this
connection between the D and D and the explicit form of
u and v in the usual representation.

The Dirac spinors are usually written®
u(")(p) =C(1+ Yy 1‘;u) v

and

(A23)
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v (p)=C(1 -, p*) o, (A24)
where C is given by (A12) and
(1] 0]
0 1
SR ol o W1/ = ol
0
i ]
0 ow
0 Q
/2 _ 1/2)
WB= 1, =10 (A25)
o] 1

We may arrange these #’s and ¢v’s side by side in matrix
form:

1000
vo={o 20 (A26)
0001
so that (A23) and (A24) may be written together as
U(p)=C{1 +7,7,p*) U(0) (A27)
and similarly the Dirac adjoint is
T(p)=U'(p) vy =CU(0)1 + p* vo¥,) Yor (A28)

The 7, is inserted in (A27) because of the sign difference
between (A23) and (A24).

The ¥ matrices in this representation are

0 =% 10
o, 0 ’7":(0 -1)°

They are connected to our ¥’s in the spinor basis by

Y= (A29)

UV asuar U= i Dours (A30)
where

U= 7_;- (_11 : ) (A31)

The connection between the usual spinors (A23),

(A24) and our D, D matrices (A11), (A20)is

D(p)=U"U(p) UD(0) (A32)
and

D(p)=7,D"(p) ¥,

=y, DY O) U'T(p) U (A33)

since D'(p) v, corresponds to the usual Dirac adjoint
spinor. We will verify (A32) by an explicit calculation,
From (A11) and (A7) we have
C 1-4
D(p)=— 5
m+p+p°0 im+py+peo)

. (a34)

m+pg=-p°0 —i(m+py—p°o0)

On the other hand,

U'U(p) UD(0)
1 (1 —1) c (m+po -p°o
_\/-2_ 1 1 m -—p’o m+Po
1

SRV ()
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L L 1-d and®
- wm 2 o o ’ »,
) <ff°'3' lff:d, ) =087 Ssst (A39)
m+py+p0 i(m+py+p-o)
R (A35) so that

M+py—p¢ ~ilm+p,-pro)
rpto? — 3t e on
which is the same as (A34). Equation (A33) may be veri- {pn'o IP“ { o) =2p, E(p) 8(p" - p) D ,3(1))D,30(P)
fied in the same manner. 4
= ZpuE(i)) 6:i(p' - p) o 600'9 (A40)
To illustrate Eq. (19), we will consider the two sim-

ple examples J=P, and J=I,, For the case J=P, we which i just what we would expect.

note that the momentum operator does not affect the The example J =T, illustrates the differences be-
internal quantum numbers, so in the spinor basis tween calculating in the two basis systems. Then (19)
P, =% PEXT (A36) becomes (dropping the discrete indices),

(pme’| 2T, | pno)

and (19) becomes

('] Py |pno) =D (pF 5 | 150 =DOIGIRI NG| A Do), (as1)
.3 o where we used the fact that I, does not affect the mo-~
PP PEXT) F(p)y DSR(p) (A37)  menta, The matrix elements of 2I':"T have been cal-
K culated, 5 and are simply the ¥ matrices in our spinor
but basis:
GN PET AN =pu TN F(B) (p'n'o’ |2T, | pnoy=D(p") 7, 2E(p) (0’ - p)D(p).  (Ad2)
=p,2E(p) &(p’ - p) (A38)  Using (A11) and (A4), we have (for p’ =p)
|
n=1/2 n=-1/2
Lo R c=3/2
f)(j))YOD(I)): m 1 (A43)
PR AL c=-3/2
L m w
n=1/2 n=-1/2
r
Db i(oi+~———-p‘p.a ) c=3/2
i)(p) ¥.D(p) = m m(m + pg) ]
. pip ‘o pi — 3/2 (A44)
| (* W) Tom =T

The calculation is made in the canonical basis as follows:
(pn'o’ |21, | pnoy = (On'o’ | UL (p")) 2T, U-(L(p") UL(p"))| pno)
=L;¥(p")on'0’ | 2T, U(L(p"))| pno) =LL’"(P')?J [ dn(k)0n’o’ |2T, | kys) (eys | UL (p")) | pno)
= L;¥(p)(0n'0? | 2T, | 0n0)(0no | UL(p")| pno) = L;¥ (p')On’0" | 2T, | 0n0) 2E(p) 8%(p" —p),  (A45)
where L-}(p) is the boost, which is given by’

v=0 v=mn

P_U — f’_" w=0

L (p) = m m ) (A46)
Pm n_ _ Pub" -
m Em = (m + bo) p=m

The matrix elements (On’c’ 12T, |0no) are given by Eq. (A4), and so we may calculate
L;iu(p:)«}nlo-l ’ 2T, I 0n0)

by simply multiplying the matrices in (A4) with (A46). The result agrees with (A43) and (A44) so the calculations in
the two different basis systems agree.

It is useful to have explicit expressions for the bilinears I')yuD, etc. These are listed below for n=n’, as these
are the only ones used in the text. We use the conventions
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0,,=1%il7,,7)]

and

1 0
Ysz"(i/‘u)guvau‘yvypy": (0 —1)

(A47)

(A48)

Greek indices run 0 to 3, Latin indices 1 to 3. The unit and Pauli matrices are abbreviated 8 =10,, and 0; = (0.

Also, 7= sign » and

N=[4m'mlm +po)m’ +pe)I"1/2,

D(p") D(p)=N{(m' +p})(m +py) ~ pep’] 8 +i(p’ X p) * 0},

B(p) voD(p) =aN{{(m’ +p})(m + py) + P’ *pl 8 +i(p'Xp) * 0},

D(p") Y D(p) =TN{{(m" + D) pm + (m + po) pl] 8+ ey [(m + o) p = (m” +p0) ]},
D(p?) oy, D(p) =iN{[(m’ + p) p; = (m + po) p}) B = e,y 01l lm + po) pi + (m” +pD) i ]},
D(p") 0, D(p) =Ney g, {(m” +pi)(m + pg) 04+ p' 2 PIy~ pap’ *0 = p1P * O ~ i€, p (P 0},

D(p") ¥; D(p) == N{(m +po) p’ *0~ (m’ +p}) p* o},
D(p") vovs D(p) =aN{(m’ +ph) p* O+ (m +py) p’ * 0},

D(p") Vs D(p) =nN{[(m’ + ) om + pg) = P’ °Pl Oy + P B’ *O+ pp P* O +lemps P 030},
D(p") 04,v5 D(p) =iN{l(m’ +p}) (m +pg) + P *Plo, ~ p, P’ O = p} P* O ~ i€, by PO},

(A49)
(A50)
(A51)
(A52)
(A53)
(A54)
(A55)
(A56)
(A57)

D(p") 0, s D(p) = Niey L (m” + ) pr = (m + py) pp1 6 +il0(m” +09) ps + (m + po) p3) = O {lm” +ph) p; + m +pe) p)) ]}

Finally, we give the useful projection operators:
DS P(p) DYE7(p) = B + 1055,

DA p) DFIF () = = v B - 1520

*Work supported by the U.S. Atomic Energy Commission
Contract No. AT(40-1)3992.
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!See the Appendix.

1= Fy+ 30m’ + m) nFy + m'Fo) +ipl, p*Fy, fy = F{+iF} + 2ip!, p*Fy,
S3=~iF{ 4 FT+ 29, pRFY, fy=mE{+ imFq + im (3plp* ~m'OFy,
Js=mF{ —im'F{ +im’ (2p], p*~m")F{, fo=}(m'Fg—mFy), fr
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(A58)

(A59)
(A60)

r;a:dronic matrix elements we consider here, we always have
n =n.

U =G+ (o, p* = 1/20m" —m)) Gy, B,=2G7+ G, By=G5+ 126G},
&= =2mGy—mGy—2mG5+m' G}, gy=~ (@/2)((m’ —m)G +mG,
+ MG —m* Gy —mGy), F=4(m' +m)G,+mG, —~mGy—m’ G,
+mGy).
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Ny, 35— Ny 1= N,y == Nog, 3= Ny,
==Na,3=No,1=— Nj, 0= Ny,
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In the normalization we have used here, the hypercharge is
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Vi corresponds to Fy, i 7y,
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Al corresponds to ], i F3,,
%2 ;

V# corresponds to T =i }75“,

A#2 corresponds to F3, +i Fi,, etc.

Bprirst suggested by J. Werle in 1965, this approximation has
been used in many calculations, e.g., A, Bohm, Phys. Rev,
D 7, 2101 (1973) and references therein.

*we use the Clebsch—Gordon coefficients of J. G, Kuriyan,
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ten as VE= Vg, & Vi + V@ Vi,

‘M. L. Goldberger and K. M. Watson, Collision Theovy (Wiley,
New York, 1964).

?!Note that P, is not the total momentum. P, is the momentum
in the hadron subspace only.

¥3J.D. Bjorken and S.D. Drell, Relativistic Quantum Mechan-
ics (McGraw-Hill, New York, 1964), Appendix B.
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subsequent formulas. It is justified by the fact that the follow-
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(101). See, e.g., Ref. 23, Appendix B.
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Subalgebras of real three- and four-dimensional Lie

algebras
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The Lie subalgebras of all real Lie algebras of dimension d < 4 are classified into equivalence classes under
their groups of inner automorphisms. Tables of representatives of each conjugacy class are given.

1. INTRODUCTION

The purpose of this article is to find all Lie subalge-
bras of all real Lie algebras of dimension d < 4. More
precisely, we shall classify the subalgebras of each
such Lie algebra into conjugacy classes and present a
representative of each class. Conjugacy in each case is
considered under the group of inner automorphisms,
i.e., the Lie group obtained by the exponentiation of the
adjoint representation of the considered Lie algebra.

The main reason for our interest in this problem is in
connection with physical applications. We are presently
engaged in a project which involves the classification of
subgroups of the “fundamental” groups of physics,
namely the Poincaré group (inhomogeneous Lorentz
group), the similitude group (Poincaré group extended
by dilations), the de Sitter groups O(4, 1) and O(3, 2),
the conformal group O(4,2), and others (see Refs. 1-3
and forthcoming papers). The knowledge of all subalge-~
bras of low dimensional real Lie algebras (in abstract
form) is of great help not only in the above program,
but is also of independent interest.

As further motivation let us mention several of the
many applications of the subgroup structure of a Lie
group (or subalgebra structure of a Lie algebra).

1. Consider a physical system (or any other system)
described by, e.g., a set of differential equations. Let
this system have asymmetry describedbya Lie groupG. A
classification of subgroups of G provides a classification of
possible symmetry breaking influences (like additional
terms in the equations, boundary conditions, etc).*

2. A knowledge of the subgroups of G is important in
the representation theory of G, e.g., it allows for the
induction of representations from different subgroups,
helps in the classification of irreducible representa-
tions, etc.?

3. A classification of subgroups is related to a class-
ification of possible bases for representations, in that
different bases may correspond to the reduction of the
representations of G to different subgroups.

4. The invariant operators of different subgroups of
G (if they exist)®® will provide different sets of quantum
numbers for a quantum mechanical system described by
G (or different integrals of motion for the corresponding
classical system).

5. A knowledge of the subgroup structure of G is
needed if we are interested in considering all possible
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contractions of G to other groups.’

Complex Lie algebras of dimension d < 4 have been
classified by Lie,® real ones with d=< 5 by Mubarakzyan-
ov.® We make use of this last classification that was
reproduced in a modified form in an earlier article.®

In Sec. 2 we discuss very briefly the method used to
classify subalgebras and then present the results in
tables. Section 3 contains some conclusions and com-
ments.

2. CLASSIFICATION OF SUBALGEBRAS

All three-dimensional indecomposable real Lie alge-
bras can be classified into nine types.? We denote them
A, s (withi=1,...,9), as in a previous paper® and
present their commutation relations in convenient bases
{ e, e, ea} in Table I. Two of these algebras are sim-
ple, namely the algebras A, ; and A, , of the groups
0O(2,1) and O(3). The rest are solvable (A, , is actual-
ly nilpotent) and can all be written as semidirect sums
of a one-dimensional subalgebra {e,} and an Abelian
ideal {e,, e,}.

All four-dimensional indecomposable real Lie alge-
bras can be classified into 12 types® A, ; (with 7
=1,...,12). We present their commutation relations in
a convenient basis { e, e,,¢e,, e, | in Table II. They are
all solvable (A, , is nilpotent) and can all be written as
semidirect sums of a one-dimensional Lie algebra
{e,} and a three-dimensional ideal N={e,, e,,e,}. For
Agy, -, A, o N is Abelian, for A, ,,...,A, ,, it is of
type A, (nilpotent), and for A, ,, it is of the type A, ;.

Two types of decomposable three-dimensional Lie
algebras exist: an Abelian one, 3A, and non-Abelian
one, A,3A,. Twelve classes of decomposable four-
dimensional Lie algebras exist, namely 44 ,,2A4,, A,
© 24, andA BA,; (i=1,...,9), where A, is the two-
dimensional solvable Lie algebra satisfying [e,, e,] =e,.

The subalgebras of the simple Lie algebras are
known, those of the decomposable algebras can be found
using the Goursat twist method,'° explained in an earlier
paper.! The subalgebras of the indecomposable and
nousimple Lie algebras A, ; (i=1,...,7)and A, ;
(i=1,...,12) can be classified into conjugacy classes
under the groupS}A“ or 7A“ generated by these al-
gebras, using a previously developed classification
method.! Let us briefly present the classification al-
gorithm for the case of relevance here, namely of an
n-dimensional Lie algebra L, that can be written as a
semidirect product
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L,={e,}0L,_,, (1)

where ¢, is a certain element of L, and L,_, is an
(n - 1)-dimensional ideal of L, .

Step 1. Find all subalgebras of the factor algebra
L,/L,_ ={e,}. This step is trivial, since there are
only two subalgebras: {0} and {e,}.

Step 2. Find all subalgebras of L,_, and classify them
into orbits under the action of the group fL,, . This can
be done either by making use of some low dimensional
faithful representation offL,, , or more abstractly, by
making use of the Baker-Campbell-Hausdorf formula,'

2
e*ye X =Y +a[X,v]+ 57 [X, (X, ¥]]

F 2K L (X, 7)) e, 2)

where X and Y are elements of L,. By induction we can
assume that the subalgebras of L,_, are already classi-
fied under #L,_,. We must hence only eliminate sub-
algebras from the fL,,_l list that are conjugate under the
one-parameter group expae, to other ones in the list
(since we have 2L,=expRe, DfL,,_l).

Step 3. Find all splitting extensions of the algebra
{e,}. To do this we must simply find all subalgebras
N, of L,_, that are invariant under ¢,,

[enﬂva]gNay N,CL,_,. (3)

The invariant subalgebras N, should then be classified
into orbits under Norg, e,, i.e., the normalizer of

{e,} in #L.. A representative of each orbit, together
with the element ¢, then provides the required sublist.

Step 4. Find all subalgebras of L, not contained in
L,., and not containing any fL,, conjugate of e¢,. They
will be of the form

{e,,+z;x,»e,,Na}, (4)
1

where N, is a subalgebra of L,_, with an L, normalizer
not contained in L,_, and x; are real numbers, not all
equal to zero and such that 2,=¢,+ ),;x;¢; is not con-
jugate to ¢, under fL,,. The algebras (4) should be clas-
sified into orbits under Norg, e, .

As an example of this method consider the algebra
A, 5 of Ref. 3 (and Table II). The nonzero commutation
relations are

e, e} =e, lese,] =6, [es eq) =—e;. (%)

Step 1. The algebra {e,, e,, e,} is a nilpotent ideal of
the type A; ,. The factor algebra{e4} has two subalge-
bras: {0} and{e,}.

Step 2. Classify subalgebras of A, , under FAae
Putting

A=xe +x,8, +x,8, (6)
and applying (2) we have

explae, +Be;)A exp(—ae, — Be;)

=(x; +ax, = Bx,)e, +x,8, + X485 (n
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and
exp(ye,)A exp(—ye,) =x,e, +x.e Ve, +x,e" e,. (8)

Choosing «, 8, and y appropriately we obtain the one-
dimensional subalgebras

{31},{82},{63}, and{e2+ee3}, €=4+1. (9)

All two-dimensional subalgebras of A, ; are Abelian.
We let B run through all subalgebras in (9), leave A in
its general form, and require [A, B] =0. This imposes
B=¢, (or A =e,). Since e, commutes with ¢,, ¢,, and
e, we can use (7) and (8) to similify A. We obtain the
subalgebras

{e,,e,},{e, e}, and{e,, e, +€e,}, €=x1. (10)

The only three-dimensional subalgebra is [e,, ¢,, e,} it-
self.

Step 3. The equation
[e,, A]=2rA (11)

has the solutions A =¢,, A=¢,, and A =¢;. It is easy to
see that the only two-dimensional invariant subalgebras
are {e,, e,} and{e,,¢,}. Thus all subalgebras of A, ,
containing e, are, up to qu,s conjugacy,

{est {es e e et fes e},
{e, e, e},{es, e, e, and{e,, e, e, e,}.
Step 4. Putting 2, =e, +xe, + ye, +ze, and using
exp(ae, + e, )2, exp(-ae, - Be;)
=g, +{x+az ~pye, +(yv+ale,+(z-Be,
with o ==y, =2, we find the subalgebras
{e +xe},{e,+xe,,e,}, and{e, +xe, e}, x#0,
(12)

not contained in A4, , and not contalininng‘,_8 conjugates
of e,. Together (9)-(12) provide a list of representa-
tives of all qu.s conjugacy classes of subalgebras of
Agg

We proceed quite analogously in all cases and only
present the results in tables. The decomposable Lie
algebras under consideration are Abelian (3A, and
4A,), of the type A,d A, or of the type A, ® B, i.e.,
direct sums of a one-dimensional algebra with a two-
or three-dimensional one. A classification of the sub-
algebras of an n-dimensional Abelian Lie algebra re-
duces to a simple problem in analytical geometry,
namely a characterization or parametrization of all
m-dimensional subspaces of an n-dimensional Euclidean
space for l<sm sn—-1. This problem has been solved
in at least two manners, namely the Hermitian row re-
duced normal form'? and the Grassmann coordination.'?
The algebra A,® A, is treated by a straightforward ap-
plication of the Goursat twist method. This method can
be further simplified for algebras of the type A,d B. In-
deed, denote the basis element of A, as ¢,, those of B
as{e;,...,e,.,}. Assume that all subalgebras of B are
known and denoted by B, , . A list of representatives of
subalgebra classes of A,® B will consist of three sub-
lists: 1. all subalgebras B; , (including the trivial
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0Sp<r, wo<y, <0, =21,

Proper subalgebras of real Lie algebras of dimension 2 and 3. The range of parameters:

TABLE I.

Subalgebras
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{et}s {32}7 (21+e3)

(91)

(ey;ey)

leg,ejl=ey, ley,e3l=e3, les, e l=2e,

4,5 (SUQ, D)
Ag g (SUQ@)

:e1

(ej,e)]=e3, leg,el=ey, ley,e5)

ones), 2. the direct sums ¢,® B, , for all B, ,, 3.
“twisted” subalgebras obtained from B, by adding an
arbitrary multiple of e, to each element of B; , thatis
not contained in the derived algebra B; ,. The ranges
of the coefficients multiplying e, must then be deter-
mined using the normalizer NorfH B ,.

As an example consider the sum A,® A, and choose the
generators { ¢,} for A, and e, ¢,, satisfying |e,,e,] =¢,
for A,.

1. The subalgebras of 4, are: {e,,¢,},{e},{e},{0}.
2. To these we add: {e,, e, e,},{e,, et,{e1, e}, et

3. The twisted subalgebras are: {e, +ae,,e,},
{e, +ae,},{e,+be,}. Since the normalizer of {e,} is
e,,e,} we can use e, to “scale” b#0 into € =+1. Thus
we have a#0, b=e =11 and the list of subalgebras is
completed.

In Table I we present representatives of each conju-
gacy class of subalgebras of all two- and three-dimen-
sional real Lie algebras. The algebras are listed in
the first column using notation introduced previously.
We sometimes indicate the corresponding Lie group in
brackets [e.g., the Weyl group, the semidirect product
of dilations and translations D1 7,, the Euclidean group
E(2) and pseudo-Euclidean group E(1,1), etc.] All non-
zero commutation relations are in the second column.
The subalgebras are theun listed by dimension and type
in the last three columns.

Table II for d =4 algebras is arranged similarly. The
subalgebras are given in three columns for dimensions
d=3, 2, and 1 respectively. Within each column they
are ordered by type.

in both tables we list the generators of subgroups in
such a manner that the generators of the derived alge-
bra are written to the right of a semicolon, e.g., {e,,
es;e,} for A, ,, {; e, e, €.} for A, ¢ [ the algebra of O(3)].
For Abelian subalgebras the semicolon which should be
on the extreme right is omitted.

Algebras are generally indicated by braces, e.g.,
{e,;e,} . However maximal subalgebras of each con-
sidered Lie algebra are enclosed in ordinary brackets,
e.g., {e;e,).

3. CONCLUDING REMARKS

The results of this paper are summarized in Tables
T and II. Together with our earlier results on the in-
variants of low dimensional Lie algebras?® these present
a fairly complete picture of the structure and properties
of real Lie algebras with d < 4. This knowledge should
be of use in the study of any physical system, or any
system of eguations, having a symmetry described by
one of the studied algebras. Furthermore, the present-
ed classification is helpful in the studies of the Lie sub-
group structure of larger Lie groups, e.g., like the
conformal group SU(2,2). It should be mentioned that
the classification is in a seunse “maximal.” Thus, con-
jugacy in this article was considered with respect to the
identity component of the Lie group corresponding to
each studied Lie algebra (i.e., the group of inner auto-
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TABLE 1. Proper subalgebras of real Lie algebras of dimension 4. The range of parameters: —*<x,y,z,v<®, 0S¢<nm, €=%1.

Nonzero commutation

Subalgebras

Algebra relations Dimension 3 Dimension 2 Dimension 1
44, BAp: (ey+ xey, ex+ vey, e3+ zey), 241 {ey+ xeg+ vey, ex+ zeg+ vey, {ei+xeyt ye,, et zeg, {e1+ xey+ yey + 22},
(ey+ xey, e3,24), (e5,e3,2y) {ea+ zeg, 3+ veyd, {e+ xey+ yes, e {er+ xeg+ yey},
(ey+ xey, €3 +5ey, e4) {eyt xes, e, {eg, 04 {egt xey}, {egd
A4,® 24, lej,e]=ey 34,0 leg,eq,ep), legie3,ey) Ay: {ey+ xle; cosd + e, sino); ey} {es}, {egcosd+e,sing},
A,BA: (e+xlezcosd+ e sing), 24y: {ey+ x(escosd+ e, sino), ¢ sind — ggcosd}, {es, e}, {ey+ xle; cosp + e, sing)}
ey Sind — e, cosP; €)) {es+ € (e; cosp + ¢, sind), e3 sind — ¢4 cos ¢}, {e2+ €{ey cosp + ¢, sing)}
{ey, e3sind — e, cos o}
24, (e, exl=eq, ley,eid=e, ADAy: (e, e33¢), {eg,eqep), Ay {eg+xegsel), {eg+xegsed, {eg+eegield, {e)}, {es}, {eqt, {e+xeg}
(eg,e35e4), l(eg,eq55ey) {esteepied, {eitegsenveed {feireed, {epreed, {eree
Az : leg+esseney) 241: fer e, {ey,ed, {egiedt, legied
Ay g: ley—ez;er,04)
x, 0<|xf<1
8,50 leg+xeg;ey,ey), a= l}x,
Ay, B4, leg, esl=e, 34: (e, e,c080+eysing, e) 241 {eg,e4+ xlegcosd + ey sind)}, {e,.eycos8é+ ey sind} {eg+ ey}, {eg
Ay gz ley+ xey, 65+ veygsey) {e|+ xey, e; cosd + e; sind} {e;cosd+ ey sind + xe,}
A, @A le;, esl=ey, les.ezl=eq+ ey 3411 ley, ey, 04) 24: {ey+xeq,eof, {eg,enreeyt, {eg,ed, fes,ey), {ei}, {ey+eed, {ey+xeyd,
Ay DA (e, eq50y) {es, e {es+ xeg}, ey}
A0 {eg+xeg5eq,€) Ayt deq+ xegs ey}
Ag B4, leg,egl=e;, leg,eql=ey 34y ley,eq,eq) 24¢: {ey, ey}, {eycoso+e,sind, e, {es,eql, {ejcosd+e,sind}, {eg+xey,
AyDAy: (eg, 45 ¢4 COSD+ ¢y sing) {er,eqt ey}, {eg+eey,en+ xeif {ey}, {eicosp+e,sinpree}
Azt leg+ xegier, e Ayt {eg+ xey; e, cosd+ ey sind}
Ag 1B A, leg.esl=ey, ley,esl=—ey 3A: (ey,ey,eq) 244: {61,62}, {ey,eqf, {62,84}, {93,(34}- {31}y {ez}: {64}, {33+"94}!
@A Loy, ee), (g e4ie) lestees, e, fej,ep+eed, {ej+eeq,entxe {ey+eey+xeyd, {eg+eed,
Ay gt leg+ xegeq,e) Agt {eg+ xegiey), {eg+ xeg; et {ey+€ey)
45,584 lei,esl=eq, leg,e]=ae, 3A¢: (e, e,y 24;: {eg,eat, {ervedd, {eg, et {e,el, {ed, {erd, {edd, {eyreey)
O<lal<1) A, F Ay (eg,eq5eq), leg,eq5e) {eiveey,ey, {e),e+ee, {egreeq, e+ xel) {ey+ree,), {es+xeyl,
Af 5 eyt xeqieq,e) Ay fegt+xeged, {eg+xeg;en {ey+ €ey+ xe}
A4, leg,e3]=—ey, ey e3]=¢, 34y leg,eq,cq) 241: {eqrzeq, e, e e, f(eg,eq) {ed, lert e, {eg+yeyd

Azt (eg+xegiey, o))

(x> 0)

(x=0)
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TABLE II.

(Continued)

Nonzero commutation

Subalgebras

Algebra relations Dimension 3 Dimension 2 Dimension 1
AL DA ley,esl=aey —e;, leg,e3l=eq+ae, 34y ley. e,y 24;: ey, ed, (esiep), {er+ze, e} (x20) led {ey+xed, {es+ ey,
(a>0) AS 1 eyt xegieq, e (x=0)
Ay DA leg, el =2ey, leg,eyl=¢, A, DA (ey,e450) 24,: {eg, e, {es.ed, (ej+ey, ey {e)}, {ed, {estxed (x=0)
[e,,e3)=e3 Agg: Gen,ep,e) Ay {ep+xegie} {ey+ eg+vey, {ey+eey)
A3,9D4, le;,exl=e3, ley,esl=ey, leg,e))=e;  Agg: Geq,ey,e) 240 leq.ey) {ed, {ey+zed x=0)
Ay ley, esl=ey, les,efd=ey 34y (eyg,eq,05) 24;: {ey.eot, {ey,es}, {ey,ez+xe}, {eg,eq+xeq) {ei}, {edt, {es+xey},
Ay 12 (eg+ xey,e95¢) {eg+ xeg}
49, ley,ed=aey, ley,eld=ey, 34 (eg,e9,e5) 24.: fey,ept, {ey+xey,eq}, {ey,e}, {ej+eey, e} {ed, {es}, {ed),
(@=0,1) [eg,e4d=ey+ eg Ag gt leqieg,e3) Ay: {34391}- {64:99} {91*"92}, {93"'7‘91}
Ay legseqey), a=-1
_ _fa, lal<1
Ajs: legiey,en), v_{l/a, lal>1
AILZ ley,eld=e;, ley,eql=ey, 34 (ey,e9,€3) 24, {el’ez}” {91+x92s23}r {es, 65+ zej} {elcos¢>+e2sin¢},
leg, eql=ey+ ey Azt legiey, e+ xey) Ay {ey3e,cosd + e, sing} {es+ xe}, {ey
Azt legier, e)
Ay ley.ed=e;, [es,eq)=e 34;: (eq,e3,€3) 24, fer e}, {ertxeg,eq), {eg,eq), {eg,e5+eey}, {ed, {ed, {ei+eesd,
Ay BA;: (gt xey,e9;ey) {ey, 4+ xeg} {eg+ xe}, {eg+ xey}
Ag gt (e3,e4; €) Ay {e4+xe3;e1}
Ay le;,edl=e(, ley,eql=e+ey, 34;: (ey, 5,9 24,: {e,+ xey,e,}, {e1,e3}, {es,es) {es+ xes}, {es},
leg, el = eyt eq Asg legieg,ey) Ag: {egiel} {es}, {ed
Apt ley, e =y, ley, eql=aey, 3450 (ey,ey,e3) 241 {er,en, {ersegds {eniea), feg erveeyd, {ed, {ed, {esl, {egd

(-1<€a<b<1l,ab=0)

leg, 4= bey

A5t (egieq, )

A 5: (egzeq,ep)

A s: (egse9,€3), U={

{eg, 61+ €ey}, {eg, e +eeyt, {eg+eey, e+ xeg) (x=0)

Ay {34;91}, {94292}, {94;93}

a/b, la/bl<1
b/a, la/bl>1

{eyreest, {eg+ceql,

{ey+ cey+ xeg} (x=0)

lej,esd=ey, ley,eql=ae,

leg, eyl =aey

3Ay: (eg,ey,e3)
As g legies, e)

Af 52 legieq,eycosp+eysing)

24,: {eq,e,cosp+eysing}, {ey,eq},
{eg, e+ €ey}, {e,+eey, eptxes}

Ay {eger}, {eg;esc080+ ey sind}

{es}, {e;cosd+eysing}, {e},

{ei+€es}, {er+eey+ xes}
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TABLE II. (Continued)

Nonzero commutation Subalgebras

Algebra relations Dimension 3 Dimension 2 Dimension 1
A%} le;,eld=¢e;, les,eld=ae, 34;: ley,ey,e3) 24;: {ejcosd+ egsing, ey}, {eg,eql, {est, {eicoso+eysing}, feg,
(~1<a<1,a20) leg,eql=0e3 Ag g legieq,ep) {eg, e+ €es}, {e;+xeg, e +ees} {es+ees}, {e,+ee,+ xes}
8 5 (e3¢, cos¢+ egsing, ) Ay {egsey}, {egsel coso+ ey sing}
Ayt ley, e =ey, leg,eql=es, 34;: (e, ey, e3) 24;: {eg+ xeg; e+ vest, {eg+xey,eqt, {ey,eqt {ey+ xey+ ves}, {ey+xest, {e}, {fey
le, eql=c3 Ag 3t (eg; €4+ xey, e+ vey), Ag: {94;€1+xez+.\'33}, {e4;ez+x93}, {94;93}
(eg; e+ xey, €3),
ey ey, e3)
At leg,eqd=ae;, ley,ell=bhey—ey, 34, (e, e, e3) 24, {eg+xeg,e5}, {ey,e5} (x=0) {ey+ xesh, {es}, {ed x20)
(@=0,620) [ey, e4l = e+ bes A8 : legi ey, e5) Ay legiep)
Ay leg,esd=2e;, leg,egl=e,, Ag i {eg,e558) 24,: {eg, ey, {er,est {ed, {esd, {es}, {ed
leg,eql=ez+e5, ley,e5)=¢y AR legieg, ) Ay {egses} {essey)
Ags leg,esl=ey, ley,eql=ey, Agq: ey, e55ep) 24¢: e, ent. len,ed, {er epreeg), {eg el {ed, {edd, {er+eest, {es}

leg, g =—e5 A,BAL (eg,e55e), Ay {ey+xeq,e; {egtxegses) {eg+ xe}

(eq, €15 e3)

A},
(0<{bli<1)

fed, fead, {ed, {ed. {eyreed

leg,esl=ey, leg,egd=1+hey, Agq: legiegiey) 24:: {eg,ent, {ey,eqt, feg,entees)
1+5, [1+bl<1
1/(1+8), [1+b]>1

1
Ag gt legey,es), b=—3

b/(1+B), |p/A+p)<1
L+5)/b, 1b/(1+n)|>1

les,eq=eq. leg,e]=bhey Yor legieg e, v={ : {egier}, fegses), {egiest

>

A5t legieq, ), w={

ZHUIBJUIM "d Pue elaled T
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Aig feq,esl=ey, leg,ed=2e, Ag s ey, e3; 1) 2A;: {ex,ezcoserressind)} {61}, {EZCOS¢+QJSin¢}, {e4}
ley,eql=e;, lez,eqd=eq A2 (egieq, e cos0+ ey sing) Aq {egsert, {egseycosd+ e sing}
AL ley,e)=ey, leg,eqd=ey, Ay g ley,ezieq) 24;: {eg, e, ey, e, {ey,en+eest {ed, {es), {esh, {estees),
les,eql =e, A, BA: (eg,eqie) {es. ey} {eg+ xey}
Ag st legier, e)) Ay ey xegie), {egienl
Ay gt legt xegieq,eq) (x=0)
Ay 10 leg,e3l=ey, leg,e4]=—ey, Asy: leayezie) 2411 e, e, (eg,e {ed, {es, {egtzelt
[83,94]:€z
AL ley,egl=ey, ley,eql=2aey, Ayt leysegie) 2450 ey ey {es}, {ea}, {edt
0<a) ley,eql=aey — ey, {93,64]=0:+493 Ayt legsey)
Ay ley,esl=eq, leg,ezl=ey, Ag s legieg,ep) 24, {eg,en}, (e3,ey {eid, {esh, {eg+ xey}
le;,eql=—ey, ley,eql=¢; Aggr legieq,ey) Ay {egsel}
Aé,’%’ (eg+ xegseq,ep) (x=0)




morphisms). When the algebra itself is realized as a
subalgebra of some larger algebra, further conjugacies
will enter into the picture and different subalgebras,
that in this article are isomorphic but not conjugate,
may become conjugate under the larger group.

A problem of importance in physics and other applica-
tions is the representation theory of each of the above
Lie algebras. For some of them the representation the-
ory has been completely developed [e.g., O(3), 0O(2,1),
E(2) et al."]. For other Lie algebras, specially the
solvable ones, this theory is much less complete. While
a large amount of mathematical work on the representa-
tions of nilpotent and solvable groups has been per-
formed,’~® it has not been systematically applied to
low dimensional Lie algebras.

An article on the subalgebras of five-dimensional Lie
algebras is in preparation, as are applications of the
present classification to the study of subgroups of
0(3,2), SU(2,2), and other Lie groups. Work is also in
progress on the representation theory of various low
dimensional Lie groups and algebras, in particular con-
sidering reductions to their different subgroups.
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New algorithms for the Molien function*
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Two new forms are given for the Molien (generating} function for multiplicity c¢,; of the identity
representation in the symmetrized nth power of representation I of finite group G. These are

M(T,G;z) =3Z,c,2" = 1/|GIZ, exp [Lz'x(g' V1= NG, L[l —zy,(g)} %,

where g is an element in G, ¥;(g) an irreducible character in the Abelian subgroup A4 generated by g,
8; the subduction coefficient of T of G|y, of 4; we usually take I' irreducible. These forms have the
merit of only requiring characters. In the following paper these algorithms are used to compute the

Molien functions for space group irreducible representations.

1. INTRODUCTION

The Molien function! for a finite group G is the genera-
ting function for the multiplicity ¢, with which the tri-
vial or identity representation I is contained in the
symmetrized nth power of a representation I' of G. The
Molien function is also the formal power series

MT,G;2)=2] cpy 2", (t.1)
n=g
By definition ¢, =1.
function is

The usual form for the generating

1

1
M(F,G;z)=WEM'

where the sum is over all elements g in the group G, i Gl
is the order of G.

(1.2)

It may be helpful in the interpretation of (1.1), (1.2) to
recall that if, in the [-dimensional representation I" of
G, we diagonalize the one matrix I'(?) for element Z and
find its / eigenvalues

diagl'(8) = (w,, ..., @), (1.3)

then we can construct the partial Molien function for ele-
ment g in the representation I':
(1.4)

m(T,2;2)=1 /11 (1 -23,)

i=1

and

M(l",G;z):L 2om(T, g:2). (1.5)
l6l %

Also, since the partial Molien function is a class func-

tion,

)= T (T, Cai2),

M, G;z :‘G‘k

(1.6)
where the sum is over all classes C, in the group G, and
¢, is the order of class C,.

In actual application, the forms (1.2), (1.4) have the
disadvantage of requiring diagonalization of all the T,

The present short paper reports on two equivalent
presentations for the Molien function, only requiring the
characters

x(g)=Trl'(g), 1.7
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which are more readily available. This should facilitate
applications, especially to crystal space groups. In the
accompanying paper we report on such applications and
give, for the first time we believe, the Molien function
for any space group representations.

2. FIRST NEW ALGORITHM FOR THE MOLIEN
FUNCTION

From the character system for the symmetrized nth
power of representation I we can find the c,,. Let X, (&)
be the character of g in the symmetrized nth power of
T'; then, since all characters of T* are 1,

cn1=)~éT§)xm(g) 2.1

A closed, but cumbersome expression exists® for x,{g):

Yo (£) = ZK X"1(g) - x(g")

K 19K Toespk ’
e 151k 1252k, 1 = o nlng )
with

2 o

2.2)

2.3)

and Kk, zero or a positive integer. The objective of this
section is to rewrite X, in terms of a simpler generat-
ing function and thereby also ¢, .

First we include the condition (2.3) by incorporating it
as a Kronecker delta in (2.2), and extending multiple
sums on K, *** &, to infinity:

_ X1(g) X&)
X(n)(g)—Kl'Z'Kné(n,Elxl) IKLKI!"'”K"K"! . (24)
Next we use an integral representation of the delta
i 1 dz
5»-0 =Res 2Pl YT fc P (2.5)

with p integer, where C is a closed contour around z =0
and Res means “residue.” Substituting (2.5) into (2.4),
we obtain

2 axcrgl)
2.6

X(n)(g) 277& fc Zn+1 I-I1 KIZO (Z)KI(K )' ( )
We also used

| § CLTEp——— 2.7

1=1 4 !
Now Eq. (2.6) can be rearranged to give
Copyright © 1977 American institute of Physics 1456



27i 2" s Ko
(2.8)
which can now be recognized as follows:
z x(g )
X (&)= 27” fc AT H exp
1 d" —~ z'x(g’ ))
= = _— 2.9
o (o ) (2.9)
We may now formally extend the sum upon ! to ©, This

sum is convergent since we may take |z|<1; also for
finite groups the characters of powers of g are periodic
[e.g., if p is the smallest integer such that g% =¢, then
x(& ) =x(gh]:

Xm (€)= :! % p(E ng )>}

which is the nth term in the Taylor expansion about z =0
of the function inside the curly brackets. Hence

, (2.10)

zZ=0

exp@; :ix—f—*‘-t~)> :i‘o Xm(£)2", (2.11)
where x,(£)=1 by definition.
Recalling (2.1), we have
M, G;z)= 1= exp(i L’CEQ):}E e 2"
=1 n=0
(2.12)

This is our first expression for the Molien function in
terms of a generating function which depends only on the
character system of the representation.

To verify the connection with the usual form of the
Molien function, we observe

x(g) =Tr{l(gH)] =Tr{T(g)]. (2.13)
Then the exponential function becomes
exp(TrZ () ) detexp<z F(g) > . 2.14)
1
But for |z[<1
~lnf1 - T(g)|=p N8N Zr(g) (2.15)
1=y
and, substituting back into (2.14), we have
detexp{~In|1 -z (g)|}
=det{1/[ 1-2T(g)]} =1/det|l1 - 2T (g)]. (2.16)

All that now remains is to average this expression over
the group by multiplying by 1/ G| and summing on g to
recover (1.2),

3. SECOND NEW ALGORITHM FOR THE
MOLIEN FUNCTION

Let us return to (1.4), (1.5). In this equation the eigen-
values of I'(g) appear. If G is a finite group, then, as
previously remarked, every element has finite period p:
g?=e. Of course, p<|G|. Consequently, I'(g”)=I(e)

1457 J. Math. Phys., Vol. 18, No. 7, July 1977

and

diagl'(g®)=(Q,1,1, ). (3.1)
It follows that
Wy =eXp(2ﬂinj/p)y (3.2)

where #; is selected from the set of integers 1,...,p,
i.e., the eigenvalues w; of I" are selected from among
the pth roots of unity. It may be that in a given repre-
sentation T'(g)* =T'(e), where ¢ divides p, but the argu-
ment does not depend on this.

In using (1.3), (1.4) we must determine which w; ap-
pear, and the multiplicity of appearance, Let us call 6,
the multiplicity [frequency of appearance of a particular
w; in (1.3},

Then (1.4) can be rewritten

1 f[ (1 ~2w;)%, (3.3)
i=t

where 2;%., 6, =1, the dimension of I,

Consider the subgroup A, generated by g, consisting
of g and all its powers: g g%,...,¢"=e. The irreduci-
ble representations of A are labeled by the pth roots of
unity:

g~exp(2min py=v(g), Ji=1,...,p. (3.4)

A little consideration then shows that if we consider T of
G as a representation of A (i.e., we subduce),

Fof G¥ryof A, (3.5)
then
1 4
j=m§y,(g”)*x(g”). (3.6)

That is, the multiplicity 0, is the reduction coefficient of
I of G, upon vy of A, To fmd the 6; one simply reads off
the characters x{g"™) of the cyclic subgroup and carries
out the reduction (3.6) in the usual manner; prior to this
one has constructed all the needed basic set of charac-
ters v; of A, as pth roots of unity. In (3.6) 4] =

Assembling this we have

M(T, G;2) - I—IGT; {l/ﬁl (1= 2v,(2)] @'é. (3.7

Using the periodicity of the characters for finite groups
mentioned above we have also verified that Eq. (3.7)
follows from Eq. {2.12).

4, CONCLUSION

We have found both of our algorithms useful for the
calculation of the Molien function, and we believe that
both are new. In the accompanying paper we illustrate
the use of these algorithms by calculating the Molien
function for irreducible representations of O} - Pm3n,
an important nonsymmorphic space group.

The merit of our method is that it facilitates the cal-
culation of the Molien function by only using characters,
which are generally more readily available than repre-
sentations.

M.V. Jari¢ and J.L. Birman 1457



Note added in proof. We thank Professor R.
Stanley for recently informing us that (2.11) could
also be obtained from (2.2) using a known com-
binatorial result.?
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Calculation of the Molien generating function for

invariants of space groups®*
Marko V. Jari¢ and Joseph L. Birman
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The new algorithms for computing the Molien generating function for a representation of a finite group
obtained in the preceding paper are applied to obtain an expression which can be used for irreducible
representation (*kn) of any crystallographic space group G. It proves convenient to express M([',G;z) as
a sum: M([',G;z) = 1/|AZ,c,m([,g,;z), where the partial Molien function m(I';8;2) is labelled by

a coset representative g, carrying the class index k of the point group P = G/T, T being the translation
group, the sum is over classes k, and c, is the order of class C,(P). The resulting form was used to
compute M(T",G;z) for irreducible representations *I'n, *Xn, *Rn of nonsymmorphic space group 4-15
or O;-Pm3n in which many high temperature superconducting crystals occur. Certain of these
representations (matrix groups) are identified as generalized Coxeter groups, i.e., unitary groups generated
by reflections. The Molien function for these groups has the required form given by Shephard and Todd:
M(,G;z) =[I1,(1—z%)]"". The d, satisfy dimensionality theorems.

1. INTRODUCTION

There are various physical problems for which it is of
importance to determine polynomial invariants of a group
G. The first step in the explicit determination of such
invariants is to obtain the number of invariants of given
degree. This can be accomplished by use of the Molien
function,! for representation I" of group G. Actual con-
struction of the invariants is a separate step which can
be accomplished by use of projection operator or an
equivalent algebraic technique. Knowledge of the struc-
ture of the Molien function provides a useful guide for
determination of the integrity basis of the ring of invari-
ants.

If one is concerned with a phase transition in a crystal,
one may have focussed attention upon some multicompo-
nent order parameter (x,,...,x,), where x; are vectors
in a Hilbert space, such that under action of elements g
in G

g (xu-"’xl)-’r(g); (1.1)

where I" is an [-dimensional irreducible representation
of G. Take G to be a space group; for the present we
suppress all indices relating to the representation. Then,
the first step in modern renormalization group calcula-
tions? requires construction of the Hamiltonian for the
system based on these order parameters. The Hamil-
tonian is taken as a power series in the set (x,,...,x,;)

=(x)
H()=H +HD () +H® () 4+ - +HO 400,

where the terms in #' (x) will be a sum of the indepen-
dent polynomial invariants, each homogeneous of degree
s in the set (x). This so-called Landau-Ginzburg-Dev-
onshire-Wilson expression is usually truncated at s =4
or 6, but future work may require considering terms of
higher degree, or the entire function H (x).

(1.2)

Work in the framework of phenomenological (Landau)
theory of phase transitions in crystals® requires know-
ledge of the basic invariants (integrity basis), and in
some forms of the theory, one needs expansions of the
Gibbs free energy F(x) in a power series like (1.2).
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A third example is the calculation of selection rules
for high order optical processes such as multiphonon in-
frared or Raman processes.*

In the accompanying paper! two new algorithms were
presented for computation of the Molien function
M(T, G; z). Theseforms willbe used here. Theyare

M(I‘,G;z)=l—élz exp(i%) (1.3)
and
b
m(r,6; 2) =gy [[1 =27, (%, (L.9)
J =1

where x(g) is the character of g in T, vy, (g) is the irre-
ducible character of g in the cyclic group A of order p
generated by g, and §; is the subduction coefficient of T’
of G upon y,; of A.

2. THE CRYSTAL SPACE GROUP G

We shall assemble some formulas for the elements of
a crystal space group which will be used later.

Let the translation group T of the crystal be generated
by the fundamental translation a; (¢ =1,2,3). Using peri-
odic boundary conditions, we have

(ela;)¥i=(e]0), i=1,2,3. 2.1
Then | T| =N,N,N,. The set of all lattice translations

(elRy) =(ell,a,), (2.2)

~N;/2<l;<N;/2, I, integer, (2.3)

forms 7. Sometimes below we denote a lattice vector by
R. It is simplest to consider a cubic system with N, =N,
=N,=N; there is no loss of generality.

Call the space group G. The factor group G/T is iso-
morphic to a crystal poiat group P. Coset representa-
tives in the decomposition of G with respect to T are

7=0
(¢|71) with { or (2.4
T =a fractional translation.
Copyright © 1977 American Institute of Physics 1459



A general element g of G is
g=(olt), t=7+R,. (2.5)

If required, we may affix an index to ¢ and 7 such as
¢,:T,; othersymbols will bedefined as needed. Assume
the rotational element ¢ has period p, so ¢*=e. Then

g'=(olt)=(IR,), (2.6)
where

R,=(t+ot+--- +¢* )= {g} st @.7
and

(6P =% (@) 2.9)

A=0

Thus

R,=p;a; (p; integer) (2.9)

is some lattice vector. The period of R, (in (2.9)] will
be (N/q), ¢ =1 with ¢ an integer. We find it simpler,
and no less general, to choose g=1 so that

g =(e|0). (2.10)

Thus the period of an element g depends on the period of
its rotational part in a simple fashion.

In (1.3) the element g™ occurs. Take for g the expres~
sion (2.5). Then

gm=(pt)"=(o™|{o}™t).

In order to take advantage of the period of ¢, we write
for m:

(2.11)

m=y+lp with u=1,...,p; 1=0,...,(N=-1). (2.12)
Then

¢m=¢" (2.13)
and
{o}7-t={e}' "ot +{o}" -t
=IR, +{¢}"- t
=IR, +{ o} e t—Tu+ Ty
=IR, +R, + Ty, (2.14)
where
Ry={¢}*-t-7, {2.15)

is some lattice vector, and 7, is the fractional (or zero)
in the coset representative whose rotational part is ¢>“ .
Then

gm=g"""=(e| IR, MelIR) ("I 7,).

The element g7 'g™g will also be needed later. The
element g is as before, in (2.5), while

(2.16)

g.=(o,l7,) - (2.17)
Hence
-1 -1 ~
gtgmg,=(el o7t (Ry+IR, (0" ) t5u,) (2.18)
where
~ 1
(0*)° =0 0", (2.19)
and
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touw =(05 ¢ 1, + o T =B T,) (2.20)

The translation {;,, is in general a sum of fractional
plus lattice translation, and might be written

tsue =Ris +Tus » (2.21)

where T, is the fractional associated with rotational
part (¢ )° in the coset representative, while R} is de-
fined by (2.21) and is a lattice vector. For later conven-
ience we define another lattice vector as

Ruo E(po °R}’lo . (222)

3. REPRESENTATIONS

We shall be concerned with the Molien function for ir-
reducible representation I" of space group G. The con-
struction of T" of G and of y(g) is well known,® and we
shall simply cite some relevant expressions.

Let the irreducible representation I of the space group
G be labeled *kn where *k=(K,k,,...,k; = ¢,K,...,k,)
and n refers to the allowable little group irreducible rep-
resentation of G(k). The canonical wave vector is k, and
G (k) is the space group of the wave vector k. Coset rep-
resentatives in the canonical decomposition of G with
respect to G(k) are g :

G=GK) +g,GR +.--+g GK) +-- - +g,G(k) . (3.1)
We always reserve the index g for such representatives.
Then

S
x*(2) =2 0P (g7 gg,) (3.2)
o=1
and 3@ (1) =0 if h € G(k); otherwise it has the value of
the character of # in the nth allowable irreducible rep-

resentation D™ of G(k). Later we require the charac-
ter of g™.

Consider the Abelian subgroup A generated by group
element g. Because we take the period of the elements
in the space group to be pN the group A has pN distinct
irreducible representations given by

g~ v, (g) =exp(2min, /pN),

(3.3
ny;=1,...,pN and J=1,...,pN.
Below it will prove convenient to take »n; =J and
n,; =J =j +uN
! ’ (3.4)
j=1l,...,N; v=0,...,p=1.

Of course, we still retain the same total number of roots
this way, but merely achieve a simpler labeling. Equiv-
alently, j is an integer (mod N), and visaninteger (mod

p).

Recalling from the previous paper I(3.1)-(3.7), we see
that the y, (g) are the possible eigenvalues w; which oc-
cur in the expression for the Molien function.

4. MOLIEN FUNCTION FOR A SPACE GROUP

We are now in position to assemble all the previous
results to calculate the Molien function for representa-
tion T (labeled *kn) of G. Our strategy must be to com-
pute the subduction coefficients 5, and the corresponding
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eigenvalues y,. There is no difficulty in principle since
we are merely evaluating the sum I(3.6):

1
8, “TaT ;n(g”‘)*x(g”‘) .

The sum goes over all elements in the cyclic subgroup A
generated by g. However, because I'" is an induced rep-
resentation and the structure of y reflects this as in Eq.
(3.2), the calculation is formally rather untidy. Here we
shall simplify the formulas as much as seems possible
at present,

(4.1)

We require that

*kn(g.m) Ex(h)(")(go g go)

=1

S

55 #00el 951 UR, +R DE P 50

=y exp{-[ik, - (IR, +R,)]} “‘)""((¢“)°ltcua

(o}

=S exp{-i[lk,* R, +k, + R, +k, *Ry,]}

Xy O@((@F)e] 7,), (4.2)

where k_ =k- ¢ ' = ¢, * kis one of the members of *k,
not equivalent to k, since (¢,|7,) is not in G(k). Note
that in (4.2) the label I has been separated out, and we
have taken m = +pl [see (2.12)] and used (2.18)-(2.21).

Then, returning to (4.1) and replacing the sum on m by
appropriate sums on y and [, we have as an intermedi-
ate step

s, 1 1 1P Yk (R () (=1 Ht1p
Z;ﬁ;'ﬁz vy (g (golghtirg )
- (4.3)

Now write, following (3.3) and (3.4), m =y +pl, and n,
=j +yN, so that

v, (g™* =exp|=2mi(u +pl)(j +vN)/pN]
=exp[~2mi(uj/pN +pv/p +1i/N)].

It is already clear here that some indices are redundant,
and we shall eliminate j shortly.

(4.4)

The first step is now to calculate the sum on I, and we
isolate the relevant terms in (4.3) to obtain

1 & (21 (. ksR,
NIZ:; exp[—zl( ~ +kGoR,,>] —A<N +T>'

This will immediately be recognized as a “lattice delta”

(4.5)

1 if y =integer
A<y>={ y =integer, (4.6)

0 otherwise.

Taking account of the restrictions on j (an integer mod
N) and k - R, =27 (integer)/N, we find

27j/N +k_ -R,=0 4.7
as the only permitted value of j, which now allows us to
write

Z bq A (—L —2,,—RL) : (4.8)

1461 J. Math. Phys., Vol. 18, No. 7, July 1977

where we define
o= T f: exp {—Z [

X )'c(k)(n)((d)ﬂ)cl Tuo) .

(6,, should not be confused with a Kronecker delta 5,
which we denote with comma between indices.) An inter-
esting note about (4.9) is that there is no dependence on
N [recall that v =0,...,(p - 1)].

Although it may appear cumbersome, Eqs. (4.8), (4.9)
may be readily used in computations. It is assumed that
the space group irreducible representations are known,
so that, for each *k#n, the set of coset representatives
in G(k) is known, as are the dotted characters y(®(",
and the set of elements g . Computation of the trans-
lations R,, R, R, is straightforward and so is the evalu-
ation of the sum (4.9).

Y ik, ( ’ --%R, +R,10)]}

(4.9)

In the same fashion that the calculation of 5, simpli-
fies, so does the calculation of each term in (1.4), which
is

1 -2y, (g)]"° (4.10)
J
and, substituting J =j +vN as before, we find this be-
comes

HH[I zexp(_z_”ﬁp*ﬂﬂ jruN

v=0 j=

(4.11)

However, as shown above

25”°A< ?ﬂ)

for the representation under consideration. Now we may
use the A again, to eliminate index j in favor of ¢ as in
(4.7), and thus we change the range of the product appro-
priately, so that (4.11) becomes

I+UN

pI:[l f‘[{l -z exp[i(2nrv ~k < R,)/P]} %vo. (4.12)

In order to exhibit these formulas in more compact
form, let us define the quantities
(4.13)
(4.14)

w,=exp(2mi/p),
= (R, +Ry,)/p].

Of course, these all refer to a single space group ele-
ment g. Then

You=exp[—ik,

2 ~J
va =piZ(w;;)#v(,ygp)u(You)p)-((k)(n)((d)u)olTuo) (4.15)
=1

and

-1 s

'v

1

= 6"0.
M{*kn,G; z) IGIEL

[T=zy,,(w,) 1"

12

11
(=]

o=1

(4.16)

We continue with Eq. (4.16) and reduce it to a form in
which is appears as a sum of partial Molien functions,
each labeled by an index derived from an index of class
of the point group p of space group G.

Let P=G/T. We call the kth conjugacy class of P
C,(P), with elements
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C,(P): ¢y i=1,...,c,,

where ¢,; is a rotation reflection,

(4.17)

Call the (ka)th conjugacy class of G C,4(G), with ele-
ments

thai8ri=le | Rkai)(¢ki | Tw)s 151,000 3Cp e (4.18)

The index o will refer to those lattice translations as-
sociated with ¢,;, and 71,; is the canonical fractional;
t.«; iS an element in 7. To understand the structure of
the conjugacy classes of G, form the conjugate of (4.18)
with respect to general element g =(¢ | t), where t=7 +R
with 7 the canonical fractional for ¢ and R a lattice vec-
tor as in Eq. (2.5). Then

8 Mo i 80i) & =ty Brs (4.19)
with

8us = (07 Ons 0 | T) =(bs; | 705) (4.20)

tiai=(el 7 (Ryo; +R')), (4.21)
and

¢ 'R =(y; —€)o "+ Ty — Ty, (4.22)

When g runs through all elements in G, one will obtain
on the right side of (4.19) the set of coset representa-
tives g,;, £=1,...,c, whose rotational parts are all the
members of the conjugacy class C,(P)ofEq. (4.17). Each
such fixed rotational part (fixed % and i) will be associ-

ated with a set of translations, e.g., #,,; which is a sub-
set of 7. For example if ¢ commutes with ¢,,, then the
set (4.21) will occur with

@R = (P —e)pT = 97 Ty Ty (4.23)

To label a class in G, we require an index k referring
to set ¢,;, and an index o referring to the particular sub-
set of translations accompanying a specified representa-
tive such as g,;. For fixed ki a subset T, of transla-
tions occurs in class C, ,(G) accompanying i~ Then for
fixed #i, the decomposition of 7 with respect to the class
label ¢ is disjoint

T=§>chti3 chtiE{tkoli} o (4.24)
Thus a single class C,(P) in P, with ¢, elements gives
rise to several classes C,(G) in G.

Let £ (¢) be a function on the translations / of 7. Then
for fixed ki

> f(t)=2{

teT o

2 f(f)}, fixed ki . (4.25)

teTkhoi

Let y be a character in a representation of G; then
(4.26)

Since y is a class function, it has the same value for all
elements in a class, i.e., is independent of {,j since
these refer to the same class.

Xhos 8ri) =X (e cr; £2i) -

TABLE I. Partial Molien function m(T, g;;2) [text (4.29)] for irreducible representation *T ' of O,3,-Pm3n. 2 In the tables:

P,=1-2" @,=1+2"; Ryn)=1+nz+2%; S=1-2z+2%; Ty=1+z2+2

2

\% *T1+ *I'l— *T'2+ *T2— *3+ *T'3— *T4+ *Ta— *To+ T5—
S A xlg) m x(g) m x(g m x(g) m xlg) m x(g) m xlg) w xlg) om xlg) m x(g) om
1 (Elo) 1 Fll' 1 %1 1 %1 1 %: 2 %% 2 '11’? 3 1—1311, 3 }—13;1; 3 %'f 3 1%3{

8 (Glo) 1 %1 1 —;—1 1 P% 1 }% -1 % ~1 % 0 1—% 0 %3 0 %3 0 1173

1 (o) 1 1-% -1 ?Jl—‘ 1 P% -1 Q% 2 %-1; -2 %7 3 ;}15 -3 51,’ 3 %15 -3 %-1;

8 UGl0) 1 %1 -1 7}1 1 % -1 —é—i -1 ; 1 SL 0 }% 0 % 0 %3 0 %ﬁ

s@n g Ly g g 0w Y m Rm ' oEm T ome T mg
6 (GlT) 1 }}—1 1 %1 -1 %1 -1 5—1 0 %2 0 113—2 -1 ﬁ -1 @ 1 P11Q2 1 Plle
6 (@In 1 %1 -1 %; -1 %1 1 %‘ 0 %; 0 }}; 1 1% -1 P21Q1 -1 P;Q‘ 1 31135;
6 (S 1 %1 -1 7%; -1 2?1"1 1 %1 0 %2 0 ’1% -1 ﬁ 1 PllQZ 1 E%; -1 %Qz
2 Notation follows Ref. 7.
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TABLE II. Partial Molien function m(T, g; 2) for irreducible representations *X#, and *Rz of O3-Pm3n.* See Table I heading.

*kn *X1 *X3 *R2
and and and

¢ g *X2 *X4 *R1 *R3 *R2 *R3 *R4
Q3 4 Q Q R,(6) Q,R,(14)

1 =i % B P N TR
Q [ Q P, R4(3) &

8 (Cyl0) 52 P2 ;g 7, ——4—“4(1) pg
Q. Q3 Q Q R,(6) Q

o s 4 & & w3
1 1 1 1 1 1

L ulo 7 =S 7, 7 H
1 L L P 2 1

8 acijo) P Py P, P P Py
@ 1 1 1 1 1

3 (o) 7’75 P P, Py 7 P
9y 9y 1 1 1 1

6 (Gl B, FF B 7, H =
1 Qs 1 1 1 1

6 (C4|7') P4Qz m Pz P2 ;22 ETQE
Q 7 1 1 1 1

6 (o) P, Pie, Q@ @ & &
1 Q 1 1 1 1

6 (s Pyp, PiQ, @ Q@ & P5@,

?Notation follows Ref. 7. Representations *X1,*X2,*X3,*X4 are called *X,, *Xy, * Xy, ¥X;, respectively, in Ref. 8.

Now let F(y) be a function on the characters of y of G,
and let { be an arbitrary translation in 7. Then

2F<x<tgk,»=2{ 2 F(x(tgn))}=Fk- (4.2
ter a |terrai

The last step follows from (4.25) and (4.26), and now
(4.27) can be used to rewrite the expression for the Mol-
ien function.

Returning to the expression I(1.5) for Molien function,
we may write, for g an element of the space group G,

M(T,G;2)=1/16)2; m(T,g; 2). (4.28)
Letting g=tg,;

M(T,6; 2)=(1/1 PN - (/1 TS m(T, tgyy; 2)
P :

=(1/IPl)§) cym (T, 8 2), (4.29)

where
ﬁ(r’gﬁZ)E(l/lTl)Em(r;tgk;z)' (4.30)
¢

The last step in (4.29) follows owing to the use of (4.27).

The symbol g, is a typical element or coset represen-
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tative corresponding to class C,(P). The partial Molien
function m (T, g,; z) will be tabulated below. Then, in-
stead of Eq. (4.16), we write

(0, 2) =(1/| DT T L1 -2700(0, 150,
o (4.81)

All quantities refer to elements /g, in G.

5. APPLICATION TO IRREDUCIBLE REPRESENTATIONS
OF SPACE GROUP 0} -Pm3n

The space group O3-Pm3n is a nonsymmorphic space
group of considerable current interest. Many supercon-
ducting compounds such as V,Si, Nb,Sn, crystallize in
this space group in their room temperature forms.

In addition since O} is nonsymmorphic, the calcula-
tions of the Molien function in this case may illustrate
typical problems which arise in such calculations for
space groups. The results arealso of interest since they
may reveal new features peculiar to space groups.

We believe these to be the first reported calculated
Molien functions for space group irreducible representa-
tions: thesearethe representations associated with *Rxn
and *Xn. Before dealing with these representations we
shall discuss the representations *I'n.
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TABLE II. Molien generating function for irreducible repre-
sentations *T n,*X»,*Rn of O}-Pm3n,

*T1+ ——-—(1 1 P
*T1— L
*T'24 —-—-—-J—(l =5
3w
1
*
T+ =D
1
* —
Ts T=Da=
T !
1-21~-29(1-2%
*4— 1
*T'5 1-z50-2H0-2%
1+2°
*T
5 A=A
*X1 1+ 24+ 328+ 528+ 2104 212
*X2 1-2H1 - 250 -2
*X3 143244725+ 152%+ 13210+ 15212+ 8214+ 4216
*X4 12020 <7
1
*
R A==
*R2 1
I, DR
*R3 1-250-29
1+ 22+ 228+ 42%+ 828+ 4210+ 22124 2144 216
* *
R2®*R3 A1)
4 8 8 10 12 14 16
*R4 1+22%+52°+112°+ 92"+ 112%+ 6214+ 32

1 -2 200 -2

The irreducible representations of this space group
havebeengivenby Gorzkowski® and inadditionare listed
inthe standard compilation of Miller and Love.” We fol-
low those authors’ notations and we shall also indicate
connection to another notation used by Gor’kov® (see
Table II).

A. Representations *I'n

At the center of the Brillouin zone, the group G(I') is
the entire space group and the factor group G(I')/T is a
group isomorphic to point group O, since all transla-
tions in 7" mayp into the identity. All irreducible repre-
sentations of O, are well known as are the irreducible
character systems.

In Table I we give: class multiplicity, coset represen-
tatives in G(I")/T~0, (first column), then in succeeding
columns for each irreducible representation *I'n the ir-
reducible character and the partial Molien function which
arises by summing overall elements inT. The weighted
sum of all the partial Molien functions as in Eq. (4.29)
gives M (*I'n, 03;2), and these are listed in Table III
where the first seven rows refer to *I'n. The notation
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of Miller and Love” is used. The result for the funda-
mental representation *I'4 ~of O} agrees with a result of
Meyer,® who gave Molien functions for the fundamental
representations of all point groups.

B. Representations *Xn

At the point X(0, 0,7/a) in the Brillouin zone the allow-
able irreducible representations of G(X) may be consid-
ered as ray representation of G(X)/T~D,, ~ 4/mmm with
nontrivial factor systems.1® All allowable (X)(n) (r
=1,...,4) are two dimensional, and the *X» are six di-
mensional. Some of these representations have been
used in recent theories of properties of these systems.®

In Table II we give the functions m (*Xn,g,;z) for n
=1,...,4. In Table II, lines 8 and 9, the full Molien
function M (*Xn,03;z) is given.

C. Representations *Rn

At the point R(n/a,n/a,7/a) in the Brillouin zone allow-
able irreducible representations of G(R) are ray repre-
sentations of G(R)/T~0, -m3m. The factor system?® is
nontrivial. Allowable irreducible representations *Rn
are two dimensional, n=1,2,3, and six dimensional,

n =4, The six-dimensional *R4 is unusual; it was used
in a recent theory of the electronic properties of these
A-15 systems.!* Representations *R2 and *R3 are time
reverse, and it proves interesting to consider the four-
dimensional physically irreducible representation (prop-
erly a corepresentation): *R2 $*R3.

In Table I, last four columns, we list the m(*Ru,
£,;2). In Table 11, last four rows, we give the five
Molien functions M (*Rn, 02;z), including for the physi-
cally irreducible *R2 ¢ *R3.

6. RELATION TO UNITARY GROUPS GENERATED
BY REFLECTIONS (GENERALIZED COXETER GROUPS)

Apart from its ultimate utility as a guide to construct-
ing actual polynomial invariants, the Molien function
may reveal important features of the structure of the
matrix group associated with representation *kn.

In particular for matrix groups I" which are unitary
groups'? generated by reflections (u.g.g.r.) there are
important dimensionality theorems which apply.*?''® In
case of a u.g.g.r. the Molien function can alwasy be writ-
ten

M(T,G; 2)=1/(1=2%1)(1 —2%) .- (1 —2%m) . (6.1)
The dimensionality theorems are inter alia

II 4. =lcl, (6.2)

i=1

S -1=7r, (6.3)

1

where 7 is the number of pseudoreflections in the matrix
group G. (These formulas apply somewhat more gener-
ally as well.'®)

Observing Tablé 111, we see that Molien functions for
representations *T'n for all n except 5+ are of the form
(6.1). We easily verify that the relevant matrix groups
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TABLE IV, Identification? of the matrix group *k» as an ir-
reducible unitary group generated by reflections {u.g.g.r.).

Dimensionality Symbol for
*kn of irr. ug.g.r. the u.g.g.r.
*T1—, *T2t 1 [
*T3+ 2 G{3,3,2)
*T3- 2 G(6,6,2)
*T4+ 3 G(2,2,3)
*4—, *IT'5~ 3 G(2,1,3)
*R1 2 G4,4,2)
*R2, *R3 2 G(6,3,2)

2Table VII, p. 301 in Ref. 12.

are u.g.g.r. It is, of course, well known that the funda-
mental (I'4-) representation of O, is a matrix w.g.g.r.,
and line 6 of Table III agrees with Meyer.®

In Table IV we identify the irreducible matrix u.g.g.r.
for representations *I'n%, n=1,...,5, with the excep-
tion of *I'5+ which as seen in Table III is not such a
group. The notation of Shephard and Todd!'? has been
used.

Again returning to Table III, we see that the irreduc-
ible *R1, *R2, and *R3 may be u.g.g.r.; we verified that
they are, The groups so identified are given in Table
IV, again following Shephard and Todd.

In this paper we limited ourselves to presenting the
Molien function for space groups; and discussing some
implications. Elsewhere we shall present and apply the
integrity basis for the ring of invariants. Other aspects
of the theory of invariants for space groups are present-
ly being investigated.
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APPENDIX: VERIFICATION OF DIMENSIONALITY
FORMULA

From Eq. I(1.4) it is clear that the degree of the poly-
nomial in the denominator is equal to I (which is the di-
mensionality of the representation I'). To verify this
property in (4.16) we have to show that
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s p~1
22 25 by=sl,, (A1)
v=0

g=1
where s, is the dimensionality of the irreducible repre-
sentation *k»n of G and [, is the dimensionality of the ir-
reducible representation D% (™ of G(k). Since v appears
in (4.15) only in (wX)"”, the sum over v will give

1 &2l i "
52 @) =A<p>=5“"’ ’
V=0

where we took into account the fact that y is restricted
to the values 1,...,p. Thus by (A2) we may eliminate
the summation over (., leaving only terms y =p. Then
from the definition of y,, we see that (v ,%" (v,u)’ |y,
=1, so that the left-hand side of (A1) reduces to:

s ? S ~
2% 006~ X&) 1750

a=1 o=1

~
However, (¢*)°=e, by (2.20), and thus 1,,=0. Finally
since 3% (g| 0)=1_(independent of ), (A3) reduces to
(A1),

(A2)

(A3)
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We show that, with certain restrictions on the potentials, the Bubnov-Galerkin method enables one to
approximate the resolvent of a two-body rotated Hamiltonian in the strong sense. In the general N-body
case we find that one might encounter some spurious singularities. However, we suggest a slight
modification in the method that enables one to construct a sequence that converges strongly to the exact
resolvent. This provides a procedure to approximate the scattering amplitudes for all N-body collisions.

1. INTRODUCTION

Let H¥ = HY + V" be the total Hamiltonian of an N-
particle system with center of mass part removed.
Hév and V¥ are the kinetic energy and potential terms
respectively, The scattering amplitudes T
for a particular reaction are given by T*=T,- T*
where Ty=~ (i, VIy,), T*=1lim, . (I;, V(E +ie -~ HY)
X V) in the usual notation, where i; and ¢, are the
initial and final free states respectively and V; and V;
are the corresponding potential terms, In the following
we consider the case of T*, The case of 7~ can be
treated similarly.

It Vaby=f, Vidy=get§=[*R*?), then T" is given
by

T*:mgl(f, (E +ie — HNg),. (1)

(+,), denotes the scalar product in #{’. Thus the prob-
lem of computing the scattering amplitude reduces to
computing the matrix elements of the resolvent, R(.),
of H" in the limit of the real line,

For a self-adjoint HY, which usually is the case, and
>0, R(E +i¢) can be approximated by a sequence
R, (E +i€) of degenerate operators. ! Thus a straight-
forward procedure to compute (f, R(E +20)g), is to set
€1 €y > -0 g, 0 and compute (f, R(E +ie,)g),
=lim, .. (f, R,,(J‘E +1i€,)g)g; and then seek
limy .o (f, R(E +i€,)g) = lim,, .. Lim, . (f, Ru(E +i€,) 8)g
= (f, R(E +i0)g),. > Thus, in this method, a double limit
must be taken in the prescribed order, which is a
rather serious computational disadvantage. On the other
hand, setting ¢ =0 in advance, not only poses a serious
convergence problem, it also complicates the computa-
tional procedure, ®

In order to circumvent these problems, the use of the
rotated Hamiltonians has been made by several
authors, ® The method requires that the potentials satis-
fy certain analyticity conditions, but the computation
procedure is significantly simplified. Although it is
anticipated that the resolvent encountered may be ap-
proximated by a sequence of degenerate operators, to
the best of our knowledge, no rigorous result to that
effect is available. In the present article we study the
convergence properties of the sequence obtained by the
Bubnov— Galerkin method (BG).* In Sec, 2, following
Simon, ? we introduce a class of two-body potentials for
which the physical information can be extracted from
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that on the rotated Hamiltonians, and collect some
preliminary results, In Sec. 3, we show that for N=2,
BG yields a sequence that converges strongly to the
desired limit, For N> 2 we have been unable to rule
out the possibility that the algebraic equations en-
countered may be singular or nearly singular no matter
how large » is, However we show that a nonsingular set
of equations can be easily constructed from the singular
ones which yields a sequence that converges strongly to
the desired limit, These results enable one to approxi-
mate the scattering amplitudes by BG.

2. PRELIMINARIES

Let /¥ be the completion of the domain /)(+), of HY
with respect to the norm ||z, =11 + Hy)!/2ull, and 47
be the completion of #/{ with respect to the norm |jul|_
=1 + HYy"/%)|,, where || ||, denotes the norm in Ay,
Let //(6) be the one-parameter group of dilatations on
2 defined by ({/(6)f)(r)=e*/%f(re®). Simon® has in-
troduced the class 7, of two-body potentials V: H
- /2, defined by

(i) V is A/} symmetric, i.e., (@, V¥), is real for all
e Hy;
(ii) V is compact as a map from 42 to //%;

(iii) The family of bounded operators V(6)
=//(8)V[/}(8) from 72 to 42 has an analytic continuation
to a family of operators from /2 to //* into the strip
IImb| < a,

It should be remarked here that some concrete
examples of the potentials that satisfy these conditions
are given in Ref. (5). Also the Hamiltonian, Hf, that
represents an N-body system interacting via potentials
in 7 is defined by the method of forms, ¢ which for a
narrower class of potentials is identical to the usual
definition of HY, In the following, V" will be assumed to
have only the two-body forces which belong to 7,. Also,
since no confusion will arise, the superscript N from
A&, will be dropped. Furthermore, A(X,¥) and( (X, Y)
will denote the classes of bounded and compact opera-
tors, respectively, from X to Y; and 8(X, X),( (X, X)
=4X),C X).

Let z=(z4,...,254) and DY=D'X ... XD}! where
DY ={2;: 0< |z;! <», - a <arg(zy) < e} and for any func-
tion ¢, ¢*=¢(re*®), The basis of the method of Ref. 4
is the following proposition:
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Proposition 1: Let f(z), g(z) be analytic and square
integrable on D¥ and V,;;€ 7,, then

(f, R(E +i0)g)y = (f, (E +i0—- H})'g),
=exp[3i (N~ 1)a]

x(f=%,[E - exp(~ 2ia)H (c)]"'g "),

where H}(a): £/, —~#,, is the Hamiltonian associated
with the form H"(a) = HY + V¥(a) with V¥(a) = exp(2ia)
x3¥ Vi,

Proposition 1 follows by replacing the integrals along
the positive real line by that along the ray at an angle
o in each variable. It is now clear that for Ve 7, the
physical information is contained in H/(c). Also, con-
trary to the case with H}', E is at a positive distance
from the spectrum ¢(-) of exp(~ 2ia)H} (a).®

In order to approximate [E — exp(~ 2ie)H(a)]'g* by
BG, one chooses a linearly independent (1. i.) basis
{¢;} in //, and solves the following set of equations:

7_"31 a;(0; (E expia) = HY(a))b )o = ($;,2%)0s (@)

i=1,.,.n;
where g% = exp(2ia)g®. J}.4 a;0; is taken to be an ap-
proximation to [E — exp(- 2ia)H/(a)]"'¢®, Before con-
centrating on the convergence properties of the method,
we establish some auxiliary results, Unless otherwise
stated, the results are valid for the general N-body
case,

Lemma 1: Let {¢,}c#, and g% H,. Then (2) is
equivalent to

?_:/1(1]((#,, (l-gB’_FK)d)j)-»:— (¢i’B§a)ﬂ (3)

where {=(1+Eexp(2ia)), Be A(/,/.), B € B(H.),
K=BV"(a)<R(4.), BeR(H_H.).

Proof: Let B be the closure of (1+Hj)™? in //_XAH,. It
is straightforward to check that B< 4 (4/_,4.). Let B
and B* be the (closed) restrictions of B to £/, and //,
respectively, Then (¢,,5%),= (¢;, 1 + H)™'gY),
= ($3, B§%), and (¢4, b,y = (0,1 +HY '), = (65, B*d,)..

The stated properties of B, B'are easy to check, Also
since (1 +H2)"'V,; (0) = A(/{,) we have that (1 +H§)™?

X V; (@) = A(#,) and hence that (1+HY)Av¥(a) = R(H)).
From closability, this result extends to K,

Corollary 1: For N=2, K of Lemma 1 is in C(4.).

_ Proof: Follows from the fact that V(o) e (C(4,,4.) and
BeB(H L, H).

Lemma 2: Let B, B*, and K be as in Lemma 1. Then
B-'(1- B*+K)=Ha).

Proof: B is obviously invertible. Also /) (B~!(1 - B*+K))
C#H,. Now for u«/y, veE/H, we have that

(e, B'Y(1 ~ B*+ K)v)y = (u, (Hy + V¥(a))r),

and the result follows from the definition and uniqueness
of H} (). %"t

We omit the trivial proof of the following result:
Lemma 3: Let {¢;} be an orthonormal basis in #/,.

Then Eq. (3) is equivalent to
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(1 - ¢B;+ K, )f,=~ P,Bg®, 4)

where f,=27. a,0;, A,=PAP,, and P, is the ortho-
projection on the n-dimensional subspace of //, deter-
mined by {6}, i=1 to n.

3. THE CONVERGENCE OF BG

In the following theorem, the compactness of K is
crucial. Hence the result is valid only for the two-body
case (Corollary 1).

Theorem 1 (N=2): Let {¢,} be a 1.i. basis in /4, and
E, a#0. Then for sufficiently large #, Eq. {2) has a
unique solution and

%5 a0, - (E exp(2ia) - HY)iF®

j=l

lim

n-%

=0.
0

Proof: From Lemma 1, (2) is equivalent to (3). Also,
without loss of generality, we can assume {(}),} fo be an
orthonormal basis in //,. Thus, from Lemma 3, it
suffices to prove the result for Eq, (4). We divide the
proof into several steps,

Step 1: (1 — ¢BY)! il (1 - ¢B*)! strongly in /..

Pyoof: For any he//, we have that limn.mII(B;— B,
=0. Also for E, a#0, Im¢#0 and hence (1 - ¢B*)!
€B(H.), 1 -¢B)te B(H,) and for each n,

la-eBytf.<|el/|me].
It now follows that
Ila-eByt-a- By,
=] - eB)"eB,- BYL - B,

(e1® g g -t

A

n-e>o ’

for (1 - B he k..

Step 2: (L+ (1= ¢BDK)™ — (1+ (1-¢B*)'K)™ uni-
formly in #4..

Pyroof: From the compactness of X and Step 1, it
follows that

lim || (1 - ¢ByyK, - (1 - ¢B*) K|, =0,

Further, since
p=(1+ (1~ ¢B)'K)?
={1-¢B*+K)'(1-¢BY
=[B"11 ~ ¢B*+K)]"'B(1 - ¢£BY)
=-[Eexp(2ia) - H(a)]"' (B - ¢) (Lemma 2),

p exists for o, E+0,° Also as (1 - ¢B*)"'K is compact,
» must be bounded. The existence of the left member,
for sufficiently large n, and uniform convergence to the
right member, now follows from a standard argument
(see, e.g., Theorem 1, Sec. 77, Ref. 4).

Step 3: 1im, ... || f,— (E exp(2ia) - B3(a))"'§*|,=0.

Pyoof; Existence of (1 - ¢B}+K,)! for sufficiently
large n is obvious from Step 2. Also for any he/,,
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lim [[[(1 - B+ K )" - (1- ¢B*+K)"Ta]),
=lim [|[(1 + (1 - Bk ) (1 - ¢BY)™

n=o

-1+ (1 - By A - B |,
=0 (Steps 1 and 2).

Further, since for g%</,, lim,..||(P,B- B)z%|,=0,
we have that lim, .. | f,~ fll, =0 where

f=-(1-¢B*+K)y1Bg®
=(E exp(2ia) - H(a))'#* (Lemma 2).

The result now follows from the additional fact that

I to< -1l

For the proof of Step 2 of Theorem 1 to go through,
it is essential that K be compact, For N= 3 all we have
is the boundedness of K, Therefore, the proof of The-
orem 1 does not carry on to the general N-body case,
Thus we are led to consider the case of a densely de-
fined general sectorial form H”(a), which reduces
exactly to the form being considered presently.

It is pertinent to remark here that some convergence
properties of BG to approximate (¢ -T)!, where T is
the m-sectorial operator associated with a densely de-
fined closable sectorial form, have recently been
studied, ® The main result was that if £ is at a positive
distance from the numerical range of the form then the
sequence obtained by BG converges strongly to (& - 7)1,
However, all we know about £ [=E exp(2ia)] in the
present case is that it is at a positive distance from
o(T) (T =H}(a)). 1t is clear from Theorem 1 that there
is a class of sectorial operators for which the results
of Ref. 8 can be strengthened to make only this assump-
tion on ¢&. However, in general this assumption is too
weak to obtain convergence. For example, in case of
a self-adjoint 7, it is known that some points of the
spectrum of the approximating operator could accumu-~
late on £ and/or move around in an arbitrarily small
neighborhood of £ (see, e.g., Ref. 9) and therefore a
solution of Eq. (2) may not even exist. The situation
in the present case gets only worse.

A modification in BG has been suggested in Ref. 10,
which enables one to construct a sequence that approxi-
mates (£ — 7)1 in the strong sense where T is self-
adjoint and £ could be real but at a positive distance
from o(7T). In the following we generalize this method
further to obtain a sequence that converges strongly
to (¢ — T)-) where T is m-sectorial and dist(, 0(T))> 0.

Let A=¢{B*- K and A, be as in Lemma 3. We have
that A< A(#,) and, for E, a#0, dist(1,0(4))> 0, and
therefore (1~ A), (1-A""1e A(4,), where | denotes
the adjoint. Let L=A+A'-A'A, L,=A,+Al-AlA,.
(1-L)!isgivenby (1-L)1=(1-A4)? (1-A"" and
thus is in A(#,). It is now clear that dist(1, o(L))> 0.
We also have that L, — L strongly. Now let U, and U,,,
be two neighborhoods of 1 in the complex plane such that
U,C Uy, the boundary U, of U, is a continuous
closed contour of finite length /, dimeter of U;=d> 0,
dist (1,3 U,)>d’> 0, dist(0(A), 8U,,s) = >0 and
min(dist(U,, aU,,s), dist(0, U,,,)) = 6> 0. It is obviously
possible to find such neighborhoods. Also let (1+¢j),
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j=1 to m(n), be the points of o(L,) such that

{1 +e)i™P cu,, let p! be the projection on the eigen-
space of L, corresponding to the eigenvalue (1 +¢}) and
set W,=y"" (1+€))pl, Ly=L,~ W, Owing to the self-
adjointness of L,, €] are all real, p} are orthoprojec-
tions and thus W, is self-adjoint and || W, ||, <1+d. Also
it is clear that (1 —L,',)" is a uniformly bounded sequence
of operators from #, to //, with bound being <1/d’, and,
for ne Uy, I(n— W), <1/5. The following theorem
(in fact a stronger result) was proven in the Appendix
of Ref., 10:

Theorem 2: (1~ L), -z (1- L) strongly in #,.

However, we give a proof here for the following rea-
sons. The present proof is relatively straightforward
and makes certain points more transparent. Also, in
contradistinction to Ref. 10, we do not make use of the
spectral theorem here and thus there is a possibility
of generalization to the case of nonnormal operators.
We shall need

Theovem 3: W, »= 0 strongly in //,.
Proof: We divide the proof into different steps.

Step 1: For ne aU, [ - W)W, - - L)' W,] ,=0
weakly in #,.

Proof: For u,ve #, and 1< 9U,,, we have that

| G, (W, - LY = W)™ W,0), |
= (L, - L) - W)W, v),
< @y - Dul. ) = W)W,

(for Wi=L,W,)

-

The first term goes to zero for L, — L strongly and the
second term is uniformly bounded by (1 +d)/5:

a@) =, [ - W) = 0 = L] W,0), |
=, 1 = LYYW, = L)y = W) W), |, 550
Step 2: The convergence is Step 1 is uniform with
respect to ns aU; 4.

Proof: Since 9Uy,; is of finite length I, the result will
follow from the continuity of A() in 1. But for 5,7’
€ Uz

[am) -amn|

=] |, - W)t = - L) w,o),|
L = Wyt = 7 = L) W), |

< [(u, [ = W)™ = ' = W) W),
= (u, [ = L) = @’ - L) W), |

< In=n'|l] @, 0 = W)’ = W) W), |
+ ]G, 0 -L) 1w - L) W), |

<ln-a| Jlul ol l1/8 +1/u]] W],

and the result follows from the fact that 6, ¢ > 0 and
W, is uniformly bounded.

Step 3: W, ,.= 0 weakly in //,.
Proof: For u,ve A, let

: _[,,m dnlu, [ - W) = (- L) W),.

=9
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Since (¢ — L) is analytic for { ¢ U,,,, the second term
in I is equal to zero., The first term is equal to

(u, W,v), as can be seen by distorting the contour into

a circle at infinity and noticing that the residue at the

origin is zero. Thus I=(u, W,v),. Now

[1l<1, 59 |G, [0r= W)t = b= L)1 Woo), | w2 0

from Steps 1 and 2.
Step 4: W, n-= 0 strongly in 4.,.
Proof: For uc H,
| Woae||2 = G, W2a), = (e, L,W,)n %0
from Step 3 and the fact that L, —~ L strongly.
Proof of Theorem 2: For uc /{, we have that
Il =Lt =@ -1)* |,
= |-, - W,- L) - L)Fu|,
<[l - Lt @~ W-L)A = Ly M, 20

for ||(1 -~ L))", <1/d’, L,~ L strongly, and W,~0
strongly (Theorem 3).

In the following theorem we obtain the present method
to approximate (1-A)1,

Theorem 4: (1~ L) (1-A!) ,= (1-A)? strongly in
Hae

Proof: Strong limit of the uniformly bounded sequence
(1-L;)is (1 - L) and that of (1-A}) is (1~ A"), Thus

A-L)MA-AD, = A-L)yl(1-AN=(1-A)"
strongly in #,.

1t is clear that (1 — A!) in Theorem 4 could be re-
placed by (1 - AY) without affecting the result. However,
this result provides a convenient computational pro-
cedure to approximate (1 —A)", which we explain in the
following. Equation (2) is a matrix equation

M"O‘,.:B,,, (5)

where M, is an nxn matrix and B, is an n-dimensional
column vector. A vector solution a, of Eq. (5) is
sought, The result of Theorem 4 requires that one
multiply Eq. (5) from left by M} and obtain

MM, a,=MB,. (6)

If this resulting set (6) remains singular or near singu-
lar with increasing n, we drop the offending part x,.
The resulting equation

(M M, = x,) 0 = My B, (M

then has a unique solution &/ which enables us to con-
struct f, =374 a/¢,. Itis clear, from Lemmas 1,2, 3,
Theorem 4 and the additional fact that P, —~1 strongly
in/4,, that £} .3 [E exp(2ia) - Hf ()] g~ strongly

in /,. Convergence in 4, follows from thatin #,. We
state this result formally as

Theorem 5: (N> 3): Let ¢, be an 1.i. basis in /4, and
E, a#0, Also let f} be the solution of the “reduced”
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set of equations obtained from Eq. (2). Then for g~
€ #, we have that
1im || £! - [E exp(ia) - HY ()1 g~ |, =0.

n~ o

4. CONCLUDING REMARKS

For N=2 we have that the sequence obtained by the
original BG converges strongly to the desired limit.
This result also enables one to investigate the spectrum
of a two body rotated Hamiltonian. For N >3, we have
the convergence of the sequence obtained by the modi-
fied BG. Computationally the modification is a straight-
forward procedure; analytically the result is achieved
in two steps. The first step is to reduce the problem
involving a non-self-adjoint operator to the problem in-
volving a self-adjoint operator. The second step is to
drop out any possible singularities. The latter modifica-
tion in BG has been studied in Ref. 10 for a more gen-
eral class of self-adjoint operators in that no assump-
tion of boundedness, above or below, was made. The
technique used there relied on the spectral theorem for
the self-adjoint operators. The present method is
easily extendable to the general class of self-adjoint
and normal operators, and possibly also for some of the
operators that may not have a spectral decomposition,
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One may produce sequences that converge to the eigenvaiues of a compact operator and the solution of an
inhomogeneous equation involving this operator by the Bubnov-Galerkin method. We produce easily
computable, converging and accurate error bounds on these approximations, provided that the operator
belongs to a fairly wide subclass of the compact operators. These bounds in turn enable one to compute
error bounds, having the same properties, on the approximations to the scattering parameters and the
bound state energies obtained by the Schwinger variational method for some two-body interactions. This
provides a method of obtaining upper and lower bounds to these quantities.

1. INTRODUCTION

Many problems in physics can be reduced to solving
a Fredholm type equation involving a compact operator.
Several approximation schemes are known to solve a
Fredholm equation, for example, the collocation meth-
od,’ the collocation-variational method,? and the Bub-
nov-Galerkin method® (BG). The latter is closely relat-
ed to the variational methods that are frequently used in
physics.*® Also the method of moments,” which proves
quite useful in certain situations, is a special case of
BG. Although it is known that BG provides sequences
that converge to the exact values, in both the homogen-
eous and the inhomogeneous case, they may not have any
bound property unless the operator involved belongs to
a class that is too restrictive for the practical purposes.®
Thus it is desirable to have anerror bound on an approx-
imate solution.

For an error bound to be practically useful, it should
be convergent to zero as the order is increased, com-
putable with reasonable amount of labor and should be
small at moderately large orders. Most of the error
bounds available in literature lack some of these prop-
erties.' In the present note we derive bounds on the sol-
utions obtained by BG which have these characteristics,
provided that the operator is in 8,{#), where 5,(#) is the
class of linear operators from # to # such that |K |,
=[Tr&'K)/2]*/* < = and 4 is a separable Hilbert space.
This class is sufficiently large to include a fairly large
number of the cases of interest: For example, the two-
body problem for a reasonably large class of potentials
reduces to studying an operator K ¢ 8,(#), H=L*(R?).°
We give explicit error formulas for the approximations
to the eigenvalues of K €4 ,(H) and to the solution of an
inhomogeneous equation involving &. These results with
some results of Refs. 4-6, enable one to compute error
bounds with the same properties, on the approximate
values of the eigenvalues and the scattering parameters
obtained by the Schwinger variational method, for the
two-body interactions compatible with Ref. 8. This ob-
viously provides a practically satisfactory method to
compute converging and accurate upper and lower bounds
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on these quantities, which have been difficult to obtain,
and/or lack these properties.!” The accuracy of the
bounds is then numerically tested for two explicit exam-
ples, one of them being the one arising in the S-wave
bound state problem involving an exponential potential.

2. THE ERROR BOUNDS

Let P, be the orthoprojection on £, , where £ is the
linear span of some linearly independent set {¢;}, j =1
toN; EyyomHand K y=PKPy. Then it is well known®
that BG approximation Af’ to an eigenvalue 2; of K, j
=N, is an eigenvalue of K. Also BG approximation,
Y, to the solution Y of the equation

(1-XK)Y=g (1)
is the solution of
(1-2K)Yy=Pyg. (2)

Furthermore, if p?’, p; are the eigenprojections of Ky, K
corresponding to the eigenvalues Ajf’, A; and K is compact,
then® A ==2,, 197 = byllz=0, ¥y -Y[l5520, where
denotes the norm. The scalar product in # will be

denoted by (- | ).

Theorem 1: Let K =8 () for some 1= 1, and K, p%,
;1Y be as above. Then

|2, =] = dayl1 - (1 -4y, 03)1 /%] =0 =20 3)

J N>

for each j such that

o+ (L -pNE KA =pDl,

<dy, L=I, (4)

where

vy= PV -p}) |2 =0,

N a0
ay=dy - A -pE K )1 -pD)],

and dZ is the smallest eigenvalue of A} A, with Ay=|A
-(1-pN K1 - p))]. [Given j, condition (4) is always
satisfied for large enough N(j).]

Proof: For any j, the eigenvalue equation for K reads
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(r; ~K)p;=0 (5)
implying that
0=pi 00 =K pY+ (1 -p Db,
= (\; =~ pPIKPII P, - bK (1 = p)p; -
Since p,hpj = A5 p,, we have that
0y =ANpib;= 05K - pY)p; (6)

As {[p¥ = p;[ ;=0, for large enough N, pip,#0, and
hence it follows from (6) that

x| = YK - o) [ (L =pDp, 1/ 975l
S O Y P TS O T VA 7 R )

Similarly, starting from (5), it is straightforward to de-
rive that (1 —p?’)pj is the unique solution of

[y = @ =pDE - pDNA - p]Ip,= (L =p)KpTD;,
which yields
A =pNp, =0 - @ =pPK KL= pD] 1+ Ty]
X (L=p Epp;, ®)
where
y=L0y =) = (1 =pNE K )1 - p)]
x ) = @ =pDE y(1 - p]

Existence of (1+T,)"! is used to derive (8) which is en-
sured by the fact that, owing to the compactness of X,
|7y |+==0 and N may be chosen so large that ||T,|| <1,

Also, for large enough N,

||(1+ Ty ‘ =(1- HTN H S
sfi=ail|n; =y
Q=M =K DA =PI
=D,.

From this and (8) it follows that

[ -pDp, ] = [ Y = (1= phK (1= pV )|
x D, | (1 =pEpY || L |63,
= dy'Dy | @ =p KDY L Yp; ] - C)

Finally, from (7) and (9) we have that

A=A [ =vp/lay = 2, -2 D, (10)

with a, and y, being as defined in the theorem. The op-
timum solution of the inequality (10) isgivenby (3). Con-
dition (4) ensures that || Ty ||< 1, pYp; # 0, and is satisfied, for
large enough N, for the reasons that o; ——*0 and

”K -Ky ”I‘N—»w . QED

It is obvious, from the proof, that the inequality of
Theorem 1 is valid if |||, is replaced by ||+ | or any
other upper bound to , and K is assumed only to be
compact, but then the bounds may not be computable.
Computability was the' motivation that we majorized
may not be computable.
Also, the condition (4) could be replaced by slightly

.
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milder restriction, for the above reason and also by re-
placing 6 by |x,~2}|. But, in contradistinction to the
latter, the present condition is easy to check at each
stage of computation.

It is also worth pointing out that if K is symmetric and
A, is positive {negative) then 7\§J is = (=) A; and hence the
bounds are given by

AME N EN b,
In the case of a nonsymmetric K this type of inequality
is not possible, but using the present result one has that
{ﬂ_o{"|.<_ p\.]s 1>\1Y+5’§’| .
Also 6” could be taken to be the ma.x1mum error in the
real and the imaginary parts of >\

In the following theorem we consider the case of an
inhomogeneous equation.

Theorem2: LetK cfB,(H), =1, and let ¥, Y, be as

in Eqs. (1) and (2). Then
¥ %]
=1 -yt [Ja-roegl+ A [Q-PIEPY ]
—eNN—_—;O (11)
where
My = [[(1=AKy)"PyK (1 - Py) P
Q=P | 150, L=1, (12)

'N >

provided that N is large enough so that |x|n, <1.

Proof: Letting Y'=Y -Y,, from (1) and (2), and the
fact that ¥, =P,Y,, it follows that

(1 -MOY' = (1-Pylg+ M1 =Py KPyY y,
yielding
=(1 -2 [(1~Py)g+A(1 =PyKP,Y,]
= (12T W) {(L = Plg + (1 = Py)KPLY 4], (13)
where
Ty=(1-2Ky)'PyK(1 = Py)+ (1 -Py)K

and we have used the relation (1-AK,)'= (1 - \Ky)'P,
+(1=Py). |¥’| is clearly majorized by €y of the theo-
rem if |A|ny <1, which obviously is the case for large
enough N, QED

On majoring the same remark applies

as following Theorem 1.

In the scattering problems one is usually interested in
computing expressions like (g|y) or {f|v), and BG ap-
proximation to (g |y), (f|») is (g]¥ ), (f1¥y). "¢ Itis
clear that in either of the cases an error bound is com-
putable in terms of €. If | XK | <1, A real, and K is
symmetric, then it is known that (gl Y= (le) 4 1t fol -
lows in that case that (g |[Y )= (g|Y)={g|¥y) + |lg] €y
Although for a symmetric K encountered in potential
scattering, the Hellmann-Feynman theorem enables one
to prove that (g |¥,)=(g|Y) for sufficiently large N even
when |AK | >1,'! for an arbitrary K the result may not
be true. It is clear that the present result allows one to
compute bounds on \(fl_v) I, for any f, involving an ar-
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bitrary K € 8,{#). When (- |Y,) itself is not a bound to
), then the following closer approximation to ¥y may
be used to improve the bound of Theorem 2.

Let ¥ be the solution of
(1 -MY y=8; (14)
Yy is clearly given by ¥, =Yy + (1 - Py)g.
Covollary 1: Let Yy be as in (14). Then
v -7,
= @ =[x [my)

[ A-POEQ-Pye|l+ |- PYEPY ]

1[ H (1- MN)-leK(l —PN)g ”

=€y—=0

N
for N so large that | 1|7, <1 and 7, is as defined in The-
orem 2,

Proof; Since ¥ Y=Y -Y, —(1-Py)g, from (13) it

follows that
Y - Y= A1 = 2T ) (1= M) K (1= Py
+ (1=POKPLY,]

and the result follows by the usual estimates. QED

If the set {¢,f, j=1to N, is taken to be {Kx™¢;}, j=1
tod, m=1to M, N=JM, then BGreduces tothe method
of matrix moments.'? (With J=1, it isthe ordinary meth-
od of moments’). The rate of convergence with this type
of basis sets is usually faster but at the expense of some
extra labor in iterating the kernel more number of
times. At a finite order, however, a reasonable com-
promise may be made between the labor and accuracy by
a careful choice of J and M with a specific problem at
hand. Also from computational viewpoint it is some-
times more convenient, with either of the choices of the
basis sets, that N be kept fixed and the set {¢ j} be varied
to minimize the error.’

The problem of the two-body scattering involving a po-
tential from the class £ 1 L', where R isthe Rollnick class
and L' is the class of absolutely integrable functions,
creates no additional problem and Theorem 2 and Cor-
ollary 1 may be directly used to compute the error
bounds on the BG approximation to the scattering ampli-
tude and any other scattering parameter. Since BG in
this case is equivalent to the Schwinger variational meth-
od, " this statement is applicable to the variational
method as well. Although the two-body bound state prob-
lem can be reduced to studying a K < 3,(H) for a much
larger class than RN L%, %in order to obtain the binding
energy from the information on K, one must overcome
some additional analytic and computational problems. In
the following we show that the result of Theorem 1 may
be used to obtain upper and lower bounds on the binding
energy.

Consider the Schrddinger equation

(Hy-E, ~V)§,=0 (15)

with symbols having the usual meaning and V=0. Let
K(E)=VV (H, - EY"'WV be the operator valued function of
E onI where I C (—=,0) is an interval that contains all the
eigenvalues in question in its interior. For a large class
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of potentials, including the asymptotically Coulombic
ones, K(E), dK(E)/dE c B,(#) are positive operator val-
ued continuous functions of E on I.}* By dK (E)/dE

& B,(H) we mean that lim,_,(1/€) | K (E + €) =K (E) ||, <.
As a consequence, the eigenvalues ;(E), j=1to «, of
K(E) are positive continuously differentiable and mono-
tonically increasing functions of E</, and E; for j=1to
n is given by®

1-2,(E))=0 (16)

n==, isthe number of eigenvalues of H, -V in/ and ]
may be taken to be finite. For each A,(E) such that A,(E)
=1 for some E <1, (16) has a unique solution. Also it is
easy to prove that the eigenvalues A} (E), j=1 to N, have
these properties. One has to observe only that P, are
independent of E and proceed as in the case of A,(E).
This is sufficient to show that if £; <0 then for sufficient-

ly large N(j ), the equation

1-AY(ENH=0 %))

has a unique solution E{ = E; and E} ——~ E for fixed j=1
to n.® If n is finite, then N can be chosen to be indepen-
dent of j. In the following we show that the result of The-
orem 1 may be used to compute a converging lower
bound on E;. For the sake of brevity of the exposition,
we restrict ourselves to the present case. Some exten-
sions are possible which are easy to notice. Also we
omit some trivial details. Further, in case A;(-0),
dx(E)/dE | ¢ _o is infinite, e.g., the case of long range po-
tentials,® I will be chosen so that I C (==, ~€), €>0. In
that case {EJ}CI is always finite, and supE(;,|>\j(E)|,
(@/dEN(E) ][], <.

Theovem 3: Let all the symbols be as in the preceding
paragraph, and 6%(E)=6} of Theorem 1withk (E) replace-

ing K. Then given j=1 to n, for sufficiently large N, the
equation
~AEY) - ¥ EN=0 (18)

has a unique solution Ef = E; and E} ;—7E .

We divide the proof 1nto several steps

Step 1

d R -
TIEY”(E)N_—:’O uniformly for E 1.

Proof: AY(E)= | pY(E)K(E)(1 - p(E) |, ;= O uniform-
ly for E <1, for A¥(E) is continuous and I 1s finite. Con-
tinuity of /)] () follows from the uniform continuity of
K y(E). Thus the result will follow if da¥(E)/dE is
bounded uniformly with respect to N and E. Now

l da¥(E)

ol ‘—1n1—~} (P E+ OK(E + (1 -pHE+ D]

P EEE) - pYE) | L]

<11m—— [PY(E + K (E+ )1 -pi(E+e€)]

—pYEK(ENL -pf(E)]
H (1/)

i E) (B)1 - pi(E)]

O pren - p e ) L) LE)y
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All the factors involved are uniformly bounded with re-
spect to N. Uniform boundedness on I follows from the
finiteness of I and continuity of dAY(E)/dE, which is
straightforward to check.

Step 2; doy(E)/dE is bounded uniformly with respect
toN and Ecl.

Proof: Since (d/dE)|A¥(E) =AY (E)| is uniformly bound-
ed for E ¢ I, the result will follow if

(@/ag) |11 - p (DK (E) - K yE1 - pY B,

is uniformly bounded. For this we need to proceed
exactly as in Step 1.

Step 3: Result of the theorem.

Proof. By ditferentiating 6¥(£) and using the results
of Steps 1 and 2, one readily obtains that

d .

FE—-éj"(E)N—’_m 0 uniformly for EcI.

Consequently, (d/dE)AY(E)+ 5)(E)]>0 for sufficiently
large N independent of E, for (d/dEWJ(E)~ (d/dE (E)
>0 and the other factor goes to zero.

This is sufficient to prove the existence of a unique
solution EY of Eq. (18) such that E} < E,, using the ad-
ditional fact that AJ(E)+ 6](E) = X,(E). The convergence
to E, is proven exactly as in the case of E},® observ-
ing that AJ(E)+ 6] (E)-—=2,(E), Ecl. QED

N—w 1

The result of Theorem 3 can be extended to include po-
tentials that have nonzero positive and negative parts
but are capable of supporting some bound states. The
only thing to observe is that only such a )\j(E) is of con-
sequence which is positive and =1, and such a X,(E) has
all the properties required.® An alternative way to han-
dle this case is to include the negative part of V in the
definition of H.'°

3. NUMERICAL EXAMPLES

The error bounds of Sec. 2 converge tc zero in the 1i-
mit of large N. Also some features of the formulas give
some estimate of the labor involved and of their accura-
cy at a finite order. In order to compute 5Y and €,, €,
one must iterate K one more time than is necessary to
compute A’,‘-’ and Y,. However, this is not surprising if,
for example, we compare the present method with the
method of moments. In the latter, with some additional
restrictions on K, one needs at least the first two mo-
ments to obtain a lower bound and at least three to ob-
tain an upper bound. In order to improve the accuracy

TABLE I. Relative error bounds: AL=(;=af)/2;, &%=
+ 61}' —2;)/; for the eigenvalues A, of K of Eq. (19).

H

1\\1\ Ak af o af af aY

2 2x102% 8x10%  3x107! x x P

3 3x10"% 8x10% 7x107 X 4 %1071 x

4 15100 3x10% 5x10% 8x10% 1x107 X

5 5x10%  1x108  5x10% 6x10% 2x107 X

6 ax107% 2x10710 gx10% 2x107 4x167 x

7 2x1071%7 7x101 8x107 7x107 3x120 1x107?
8 9x10M 2x108% 1x10® 1x10® 3x10% §x107°

at a finite order, we have majorized the expressions by
the smallest computable upper bound available. Owing
to these careful estimates, for example, if pﬁ'=pj for
some N (Theorem 1), then 5)=0. Nevertheless, a con-
crete numerical example would give a more accurate
estimate of the amount of labor involved and the accura-
ey of the bounds.

In the following we test the present method for the case
of some Hilbert—Schmidt operators (I=2), since this is
the type of operators one faces in the two-body scatter-
ing and bound state problems. Explicit expressions in
terms of the moments of K for this case are given in
the Appendix.

The first example we consider!'® is of K defined by

®x) = [ 2R, Hul®) dt, (19)
where
k(x,ﬁ)_—.{%&"x)g’ <%
2H2-8)x, x<t.

In this case #=L%0,1], K c8,(#), ||k |,=v1i/180. The
eigenvalue problem is exactly solvable, yielding

Ui tamd/?=0, j=1,2,.... (20)
For the basis set we chose
ij(X):Xj-l) j=1,...,N. (21)

The relative error bounds to the first three eigenvalues
A, =.242962685095..., 2,=.04142261498403..., X,
=.0157086716133 ... are shown in Table I for various
values of N. It is remarkable that the upper bounds are
as accurate as the lower bounds, and are obtained with
little extra labor.

TABLE II. Error bounds €, and || Y — ¥,|| for the solution of Eg. (1) with K and Y of Egs. (19)

and (22),

5.0
1Y - vyl €y

A 1.0
N 1Y - Yyl €y

-1.0
1Y~ ¥yl €y

-5.0
Y-yl €x

1.4 x 1071
1.0 %102
2.8 x1073
1.6 x 10

2.5x107 2.8x107?
3.9%x10™ 4.1x107®
1.4x10% 1.4 x10™
1.3x107% 1.3x107°

[ N U

3.2 x 1072
3.8 x107®
1.9x10%

2.5 x 10-2
3.7 x 1073
7.9 x1078
8.5 x 107

1.5 %107
2.6 X107
7.7 %107
8.4x1078

5.3 x 1072
5.4 %103
2.2 x10™
2.8 x107°

7.5%x107
1.7 x10°2
1.9 x 107
2.6 x 107
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TABLE II. Relative error bounds: A=, -2))/A;, AY=(F
+ 6 —A;)/A; for the eigenvalues A; of K(O 1) of Eq. (23).

i
N af

af Al Ay
2 2 x 1072 9 x 1073 6 x10°! X
3 3 %107 1x10™ 3 x 1071 X
4 3 x10™ 1x10™ 1x10°! x
5 2x10™ 7 x 105 3 %1072 x
6 2 x10™ 6 x107 9 x1073 3 x 1072
7 1x1074 4 %10 4 %1078 1x107?
8 7 x 107 2 x 10 3x10" § x 1078

For the case of an inhomogeneous equation, involving

this K, we take g(x)=x%/6 —x/3 in Eq. (1). Exact solu-
tion for this case is
Y =¥ x -2 sin(Vax)/(sinVA+ VX cosvx)]. (22)

€y (Theorem 2) with the basis set given by (21) for
several N values is compared in Table II with ||¥ - ¥ ||
for A=1.0,5.0, -1.0, ~.5.0. Our bounds do not differ much
from the best possible bounds, viz., |¥ - Y.

The other case we consider is of K(p) defined by

& (pYu)( )= [ 5 k(p; o, Edu(E)dE (23)
where
k(p; o, g): {(1/2p)e'(°"”/2'”(e“ _ e-M), £ 0, (24)
(1/21))6'(”*”/2'“(6” - e-pa), §>p.

The underlying 4 = LY 0, *), K(p) € B,(H) with [|[K(p)|,

=[2(1+p)(1+2p)?]"'/2. This case arises in the S-wave

bound state problem involving an exponential potential,
with a proper choice of units and the binding energy E,
= —p%. The exact eigenvalues X;(p) are given by!s

I 3(p)) =0, j=1,2,...,

where J,(*) is the Bessel function. The basis set was
chosen to be

(25)

o p)=ple?’?, j=1,2,.... (26)

The relative error bounds to the first two eigenvalues
A, (p)=0.545833, 2, (p)=0.117637 for p=0.1 are given in
Table III. The same conclusions are reached as in the
previous example.

In the tables x stands for the case when the quantity
in question could not be computed because N was not
large enough to satisfy the condition of the correspond-
ing theorem.
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APPENDIX
Let (u,);;=(®|K"®)), 4,j=1,...,N, n=0,1,...,
let pu, be the matrix with elements (u,);,, and
B;=(,le), 7=1,2,...,N.
Then A}, j=1to N, are given by

and

(“’1 - A{]v uo)uljv =0 ’
where u} is a column vector with N components., Let U
be the matrix with columns u;‘.‘, j=1to N, and let Vbe the
matrix with elements V;;, where

Vii= Uu[UtIJoU],l/z,

7

i,j=1,,
Then the expressions needed to compute 69’ (Theorem 1,
l=L=2) are given by

YNT (Vtﬂgv)” - (7\7)2

and

ay= min [AY - aF|
f#i=1,N

i ¥ 1/2
- - 2 02087 20,0, |
For the inhomogeneous problem, let M be defined by

M=, -2y, .

Then the expressions needed to compute €, (Theorem 2,
=L =2) are given by

[(1-Pyel =lllgl? - 8 uz6]*/2,
(1= PYOKPLY y||=[BM " (1 = py g p )M B2,
1 =Py |l =LK 3 - Tr(uu3h 2,

11— 2E Y PyK (1 = Py) |, =[TeM™ (1, — wDM]H2.
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The properties of mixing and complete mixing are studied for the baker’s transformation and some
generalizations with the usual measure dp(x)= dx. When each linear portion maps on the whole
segment, mixing is true. When some linear portions do not map on the whole segment, mixing can hold or
not, depending on the transformation even with a more general measure.

1. THE BAKER’S TRANSFORMATION

One of the most studied broken linear transformations
is the baker’s transformation. To make bread, the
baker first prepares a paste of flour, water, salt, etc.
To make sure that the paste is homogeneous, he re-
peats certain movements which may be schematized for
a one-dimensional paste as folding it over and then
stretching it to its original length:

if 0sx<},

T:«:{zx 1.1
2(1-x) if 5<x<1.

A function P(x) defined for 0 <x < 1 (for example, the
distribution of salt in the paste) is changed by this
transformation to

TPx) =4{P(x/2) + P(1 - x/2)]. (1.2)
Transformations T and T are related through
Jy PIQ(TY) dx = [ [T P()1Q(x) ax (1.3)

for arbitrary functions P(x) and @(x).

Several well-known properties of T or T may be
noted.

1.1. The fixed points of T are 0 and £, i.e., Tx=x
for x=0 and x = 2, One may also say that 0 and % form
l-periods of T.

1.2. Successive transforms of any rational point x
=p/q, where g=2%-q’, @ an integer and ¢’ an odd in-
teger, ultimately form an »-period with » < (g~ 1). In
fact, if x=p/q, then Tx=p,/q,, where p; <q and g, =¢
or q, =q/2 according as ¢ is odd or even. Thus, if ¢
=2%.q', then T*x=p'/q’, p’ <q’. Further applications
of T change p’ to even integers less than ¢’. As these
later are finite in number, the 7"x for »> @ form an
r-period with » < (¢’ - 1}/2. In the baker’s language, if
initially the salt is concentrated at a rational point then
even after an infinite number of repetitions of T the salt
will be found on at most a finite number of points.!

1.3. The transformation 7 has the property of com-
plete mixing; i.e., if the function P(x) bas a support
of nonzero measure—for example, if P(x)#0 over an
interval however small of (0, 1)—then

LimT" P(x) =const = fol P(x)dx.

n=o

(1.4

In the baker’s language, if initially the salt covers a
nonzero length, whatever its concentration, then re-
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petitions of 7 ultimately spreads it out over the entire
length (0, 1) uniformly.

To see this, write P(x) as a Fourier series

w©

P(x) =7, cexp(2mimx),
Cn= fol P(x) exp(~ 2aimx) (1.5)
and note that
T2 [exp(2mimx) ] =T cos(mmx)
_ (cos(mmx/2) if m is even,
{ 0 if m is odd. (1.6)

Thus, if m=2%-m’, « m integers and w’ odd, then
T**2 exp(2mimx) =0, i.e.,

HmT"P(x) =), ¢, limT"exp(2mimx)

N~ M=o n=oo

:Coz‘yf;)lp(x) dx,

Using Eq. (1.3), the complete mixing property (1.4)
may be rewritten as

Lim fol P(x)Q(T™) dx = fol P(x) dx fol Qx) dx

new

1.7

for every pair of functions P and .

1.4. One may sometimes be satisfied with a lesser
property. A transformation 7 is said to have the prop-
erty of mixing (and not of complete mixing!) if

lim ‘f(ll X"y dx = fol x"'dxfolx dx =1/2(m +1)

n=w

(1.8)

for every positive integer w. Because of Carlson’s
theorem, 2 (1. 8) is still true for every real positive m.
Complete mixing and mixing are similar properties ex-
cept for a certain class of functions, not regular enough
to be expanded, in some way, as infinite sum of powers
of x [for example, P(x)=sin{1/x)---1.

For the baker’s transformation T it is easy to verify
that

ful xT x dx
=l
2=n 2 "\_1 n+l n+l s
:fo ax2rx 2y (@™ +x)+ (27 - x)] (1.9
i=0
- ;) n= 1;
and, in general,
Copyright © 1977 American Institute of Physics 1476



1
I x™T"x dx
0

2=n 211,y
:J. 2% 2, [ +x0)™ + (27" — )™ dx
0 =0

g-n(mel )+l z";\ A . "
=miDm+2 = [(2)™2 - (2§ +1)™?]
2"

+(m+1)(m+2)

g-n(mel)+l 32;—'\1‘1 me2 2;—'\1 . +z)

:(m+1)(Wl+2)(2 = I —?;;]
ZYI
L .10
+ (m+1)(m+2) (110
On using the formula

n-1 1 b, p +1 :
T P B pel-j 1.11
e p+1,-z=1(j ) me -

where B; are Bernoulli numbers, we get after some
arithmetic

! 1 A /wm+1 2B ;
m — > j+2 -njfof+2 _
_[OXT"’””‘ m+1;’0( j )(j+1)(7'+2)2 (2" -1)
(1.12)
o, (1.13)
20m +1)

Of course, the complete mixing property implies the
mixing property and therefore this verification is super-
fluous for T.

1.5. One may think of nonlinear transformations
which are equivalent to baker’s T. For example, let

Hyx =sin®(nx/2), Hilx=(2/7) sin™Vx;
then
Fyx =H TH{'x = 4x(1 - x)

is the quadratic transformation of Ulam and von
Neuman. ® Similarly

H,x =sin(nx/2), H,x =tan(mx/4),
H,x =tan®(nx/4)

give us
Fyx=H;TH;x,
For=2x(1- 3172

Fyx :{Zx/(l - x?),

0=sx<1,

0<sxsvV2-1,

(1-x%/2x, Vv2-1<x<1,

and
F4x:{4x/(1—x)2, 0<x<3-V8,
(1-x)%/4x, 3-V8<x<1.

These F; all have the property of complete mixing just
as T.

2. GENERALIZATIONS

2.1. A trivial generalization will be to fold the paste
over exactly / times and then stretch it to its original
length, where ! is a positive integer;
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2j/l<x<(2+1)/1,
§=0,1,...,[¢-1)/2],
2j-1x, (2j-1)/l<x<2j/l,
i=12,...,[(1/2],

- 2j +ix,

T,x: (2 1)

and [x] denotes the largest integer less than or equal to
x. The transformation T considered above in paragraph
1.1 is T,. A function P(x) is changed by T, to

T,P(x):ll[P(l{)+P(2;x> +P(Zl+x>+p(4l‘x>+...]

[(1-1)/21 P (1/21 P x
:1[ b P(zif—i> + 0 P(ZJ “)]
! §=0 l &l !

It is easy to verify the complete mixing property when
1 is even. In fact from Eq. (2.2)

(2.2)

cos{2mmx/1), if 2m/l is integer,

T, exp(2Timx) = {
(2.3

0, otherwise,

and
4 2 s 2 . s
T, cos (ZWTW)> __{cos(zmnx/l ), if 2m/1? is integer,
(2.4)

Thus, as in paragraph 1.3, expanding P(x) in a Fourier
series, we see that, in the limit n — =,

0, otherwise.

LimT; P(x) = fol P(x) dx.

n-oo

(2.5)

When [ is odd, this procedure is not easy, and only the
property of mixing is verified below.

We will follow paragraph 1.4 and calculate

1
x™Tix dx
0 1" Lun-1y/2) 11" /21
= x| 2 @i+ 2 (2jl-"_x)"'] dx
0 i=0 i=l
l’"(m*l) [[(l"-l)/Z] . m+l . m+2 ; m+21
il (revm - g (v )

(/2

2
il

[(24) ™2 - (2 - 1)”‘*])].

(2.6)
From here onwards it is better to separate the calcula-
tion for / even and ! odd. Using Eq. (1.11), we get after
some arithmetic

1
f x™T"x dx
0

1 LN m+1) 2B,,,
Tm+1 S\ 7 JG+DG+2)

1
3 m+l
((2] =)™ - m+2

(2%~ 1)1~ 2.7

when [/ is even and

1
f x™T"x dx
0

(Y kR VI B N
T+ D)m+2)m+3) (m+ 1) +2)

1 ~nym+l ~
mtim\ Byl ; i
+20" N Y . 281+ -1
,?;’0(]/(7+1)(7+2)(7+3)[ ( ) ]
(2.8
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when [ is odd. Thus whether ! is even or odd, we get

) amTyx dx =1/20m + 1) + 0(-2) (2. 9)

and T, has the property of mixing.

2. 2. Another possible generalization of the baker's
transformation is to fold and stretch unsymmetrically,

T, x— X/ 0<x < q (2.10)
(1-x/0=-a), a<x<l,
The corresponding T, is
T, P{x) = aP(on) + (1 - )P[1 - (1 - adx ], {2.11)

Already in this case it is not easy to confirm the com-
plete mixing property. However, the mixing property
can be verified as follows. Let

Im,n) = '{01 x"Toxdx, m positive integer. (2.12)

Then for m =1, n> 2, we have

“ mopnal [ A . ! mpn-1 1-x .
I(m, n) = ) X"TY 5 dx + i "7 1o dx.

A change of variables under the integral signs then gives
the recurrence relation

o, ny =™ = (a= )" W (m, n-1)

s ;
_3 (7_ )(a— VG, 0= 1),
F=0 \.

(2.13)

m =1, n= 2. The initial values can be easily calculated
separately as

H0,n) =%, n=1, (2.14)
1 1- o™t
V= s 1oa "7 % (2.15)

Equations (2.13), (2.15) determine I(m, n) uniquely. As
Im, n) =1/2{(m + 1} is a solution of Eqs. {2.13) and
(2.14), but not of (2.15), let us put

Iom, w) =1/20m + 1) + F(m, n). (2.16)

Then F(m, n) satisfies the recurrence relation (2.13)
with 7 replaced by F, the initial conditions now being

1

F(0,n) =0, F(m,1) R CES )]

1 Cym*l 1
1-a ~20m+1)

x (2.17)

One can, in prineciple, determine all the F(in, #} step by
step, increasing i» each time by one. For example,
F(1,n) =g o= (a=-1)2], (2.18)

N T O Yl P I O VL
F(2,n) = 8 (- (a-1P%—f+(a=1)7]

+f[0® = (- D ](a~1)(e? - 2a+3). (2.19)
In fact, for the mixing property we need only the result

lim F(m, n) =0, (2.20)

ne®

which can be seen by a recurrence on #, provided that
O0<a<i,
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2.3. There is no essential change in stretching and
folding unsymmetrically at several points; for 0=ga,
<@ <-o<@g =1, let

Tx=T(ay, @, ..., a)%

X = dy; ;
__Z_t_" {lzigxgazi-&li l:Osly--'y[(l"l)/zL
)i — Gz
Qi = X R /
P Ay <x<ay, i=1,2,...,[1/2].
(2.21)
The corresponding T is
g, ..., q)P{x)
ta-1y/2)
= 20 (@gun = @) Plag + (a0 = a3)x]
i=0
(/21
+ 2 {ag - azm)P[“zi ~ (ay; - “zi-l)x]~ (2.22)

i=1

As in paragraph 2.2 above, one may verify the mixing
property of this T. Let

Ilm, n) = .{01 K™ Ty dx.

Then just as in paragraph 2.2, we have for w > 1,
n=z2,
u-1)/2)

1 [r/21 N
m+ ~ m+
(@p10 — @)™ - 2 (@i — @zi.1)
t=0 i=1

mal A FLE-1)/2) .
XI(m,n-1)42, (])[ 2 (aga - ay)’™

i=0 i=0

I(m,n) = l:[

(/21 _ _

- 20 (g = g )™ ]ag'i" IG,n-1).

i=1

with the initial conditions (2. 14) and easily calculated
I(m,1). Putting, as before,

Z(m,n}:z + F(m, n)

_r
{m+1)
and observing that for any j = 0,
t[(z-\)m

| [ /2) N

(g1~ ) | and ‘ 2o (g — azin)’ |

IR i=1 '

are both less than unity, a recurrence on w will show
that

Lim F(n, n) =0, wm= 0.
As in (1.5), we may find nonlinear transformations
which are equivalent to a transformation (2. 21) or more
generally to a broken linear transformation on e, 8]
and such that both minimum « and maximum B are
reached on each linear fragment.

For example, let T,(x) and U,(x) be the Tchebycheff
polynomials® of order %, V,{x) being the related function
Vo(x) = (1 = x3)1/2U,(x); then, for

H(x) = cos{nx/2), H(x)=(2/7) cosx,

HAT,H(x) and H™V,H(x) both are piecewise linear.
Furthermore, in this peculiar case complete mixing
can be proved, at least for even k.

2.4. Next one may consider a2 broken linear trans-
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formation in which some of the linear parts do not map
over the whole segment (0, 1). For example, for 0< a, 8
<1, let

Tx:{(l—B)x/a+B, 0<x<aq,
1-x/1- ),

(2.23)
asx<1.

This transformation T does not have the mixing prop-
erty, as can be seen as follows. We have the recurrence

relation:

1
I(m, n) :f x™T"x dx
0

( o m+l fl an-l i
= —1———3) A (X—B) xax

+{(1-a /01 {1~ - a)x]"Tx dx.
A iuvorable case will be to take a=p8. Then
I(m, n) = o™t fo‘ (1 -x)"T"2x dx
+(1-a) 1= (1~ ax]" T xax
:?0 (’]”) (=) {a™ (G, n-2) + (1 = &G, n=1)].

These difference equations, along with the initial
conditions

Im, 1) =[m +Dm + 2T a™2+ (1~ a™)/(1 - a)]

and
Im,2)=a/(m+1) +{(m+1)(m +2)1*

x{a™ 4 ot +[a™ - (1= a+a?)™)/[a(l - )2,

give
1 1-ab
i —_—— +a#l.
1n1-r21(m,n)-2( i 0 azl

As (1~ &®) /(1 - &® is not equal to 1, the mixing prop-
erty is absent.

The conclusion seems to be that a broken linear
transformation has the property of mixing if and only if
every linear portion of it maps on the whole segment
(0, 1).

Actually, the definitions (1.7) and (1.8) can be en-
larged to less trivial measures p(x). First of all, we
must set (T"(x)) is invariant; then we shall say that
there is mixing whenever

. 1
11”111 fo X" T d(x)
1 ., 1
= [, xmduto) [7 T dux)
and there is complete mixing if

lim [ P(0)Q[T"x]dp(x)

= fol P(x) dulx) j;l QUx) du(x)
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for every pair of arbitrary functions P and Q.

In this new sense, mixing can be proved for the case
a=f above when setting

dx/(1+ o),

dx/(1-a?), if a<x<l,

du(x):{ o (2.24)

It is presumably a limiting case between mixing and
nonmixing, but we were not able to prove it. Experi-
ments on computer® for a=p =4 show that the total
length of the segments of (0, 1) for which T%(x) > 4 [resp.
T"(x) <] goes to a limit which is £ [resp. %] in agree-
ment with (2.24). One may recover this result by a re-
currence.® This is perhaps the way of testing whether
or not there exists a measure constant by steps for
which mixing holds in the more general case (2. 23).

For the “mirror” transformation

x/a ifx<aq,
Tyx =
1+a(1-8)/(1-a)-[(1-8)/(1 ~ &)]x if x> a,

it is impossible to find a measure continuous by steps.
This can be seen directly on the graph of T°(x). For
x>a", T"(x)> B, and when » becomes very large, the
origin becomes a singular point, the graph of 7"!{x)

for ¥ >0 being concentrated in a band 8 < 7" (x) < 1. The
only “measure” for which mixing is verified is du(x)

= 0(x - x;) dx, where b is the Dirac 5 distribution and x,
is the invariant point T(xy) =x,=(1- aB)/(2 - a - B).

The same thing occurs for the quadratic
transformation

Tyx=4kx(1-x), k<1,

and there is surely no mixing. The problem remains in
both cases of the repartition in the plane of the ex-
tremities of the broken lines. This has not been done
yet.
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The physical s channel of a ladder graph amplitude contains the cut of this analytic function. Exact
bounds for the modulus of the sum of the ladder graph amplitudes of the scalar g¢* theory are obtained in
this channel. The derivation of these bounds is based on an analytic continuation of the Fourier transforms
of the ladder graph amplitudes. The results are compatible with a smooth asymptotic Regge behavior, up

to a logarithmic factor.

1. INTRODUCTION, OUTLINE OF THE METHOD AND
STATEMENT OF THE RESULTS

At fixed momentum transfer and as a function of en-
ergy, a scattering amplitude coincides with the value
taken by an analytic function on one of its cuts. This is
true for each term of the perturbation series. As the
evaluation of an analytic function on the boundary of its
analyticity domain may be quite intricate, it is in gen-
eral not easy to compute explicitly the contribution of
a given Feynman diagram to the physical values of a
scattering amplitude. For instance, the Regge behavior
of the sum T(s,?) of the ladder graphs shown in Fig, 1
can be obtained for s — < along a ray of the complex s
plane (args=const #0).! To our knowledge, the asymp-
totic behavior of T(s, /) as s — < along the positive real
axis has not been properly established.

In a previous work? the above-mentioned difficulty
was circumvented by using the fact that the ladders of
Fig. 1 have only a right-hand cut in the s plane. As the
negative real s axis is inside the analyticity domain of
T(s,t), it was not too hard to derive upper and lower
bounds of this amplitude in its physical u channel, where
s <0. In fact, the methods developed in Ref. 2 allow the
derivation of upper bounds for | T{s,t}! not only on the
negative real axis, but also on any ray of the complex
s plane. Nontrivial extensions are needed on the right-
hand cut s > 4u?, This article is a sequel to Ref. 2 and
is devoted to this more difficult problem of getting in-
formations on the behavior of T(s,f) in its physical s
channel. We show how upper bounds of the modulus
I T(s,/)! can be obtained there.

Whereas our bounds are valid at all energies, we
shall be mainly interested in their implications on the
high-energy behavior of T(s,#). The question of this
asymptotic behavior is complicated by the fact that the
individual ladder T (s,#) (Fig. 1) has its cut starting at
s=(np1)? and has to be considered as a function of s,
=5 —(nu). For any s larger than 4 1? there are positive
and negative s, ’s. If s becomes large, there are always
some s,’s which are small compared to s. Therefore,
the asymptotic behavior of the sum T(s,t)=y T (s, is
not the result of a same asymptotic regime setting in for
all the 7 ’s. For this reason, it is not immediately
clear that the mass p of the exchanged particle can be
neglected. One may even wonder whether the power
behavior T(s,t)=s* obtained in the u channel will survive
in the s channel. As a matter of fact, our results sup-
port the conjecture that the distribution of the branch
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points s = (nuu)? over the positive real axis does not
affect the leading part of the asymptotic behavior of
T(s,t). The reason for this is that the main contribution
to T'(s, ) comes from the T, ’s with z*logs. The ¢!« of
these 7', ’s are much below s and cannot prevent a
smooth asymptotic behavior.

As in Ref. 2, our main tool will be the Fourier trans-
form of the ladder graph T (s,t). The expression of this
Fourier transform has its simplest form in the case of
forward scattering # =0. We restrict ourselves to this
case and set T(s)=7(s,0). After a redefinition of the
function f,(z) used in Ref. 2, we write formula (2.3) of
this reference as follows:

T,(s)=il6nx" [~ dz f,(2) explizs,), (1.1)

where s, =s = (nu)? and x = (g/47)%. If 5, <0, T, (s) is
real and the techniques of Ref, 2 lead to upper and lower
bounds of this quantity. Therefore, the really new prob-
lem in the derivation of a bound for
T(s)=2, T,(s), (1.2)
n=2
when s >4 u? comes from those terms which have s, 0.
We give a short outline of the method we shall apply in
the treatment of these terms.

Suppose the Fourier transform fn(z) has an analytic
continuation into a sector 0 <argz < 6 of the upper half-
plane which is suitably bounded. Then, if s >0, the
path of integration in (1.1) can be shifted onto the ray
argz = 6 and we obtain an upper bound for | T (s)! from

T (s)| <1l6z%\n “ar f (rei®)| exp(= s sind), (1.3)
n 0 n n

if s >0,

All the present work is based on the fact that we
succeeded in continuing fn(z) into a sector of the upper

P, P,
FIG. 1. The ladder graph
W T,(s,t). For simplicity, all par-
I g ticles are assumed to have the
=L c same mass m = 1. The variables
s and £ are defined, as usual, by
| s=(py+pa), t=(ps+py)°.
P Py
b
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half-plane and in establishing simple bounds for | f"(z)!
in this sector. The only drawback of our undertaking is
that the size of our sector is a function 6, of n which
tends to zero as n— <. We do not know whether this
decreasing 6 _1is due to singularities or bad asymptotic
behavior in the upper half-plane or if it is a manifesta-
tion of our inability,

The bound for |f (re?")! leads to a bound for | T (s)]
through (1.3) if s, >0. From our previous work,? we
have also a bound for T,(s) if s, <0. A combined use of
these bounds leads to an upper bound for | T(s)| through
(1.2). The s dependence of this bound has the form

| T(s)| < const (logs)*/2s%, (1.4)
where
(ls:-—l+7\. (1.5)

This exponent is larger than the exponent o, obtained
in the # channel (T(s) <const «™ for s — —=), It coin-
cides with o, in the weak coupling limit. The fact that
we do not get «_=a_for all coupling constants is no
surprise because the majorizations performed here are
cruder than those of Ref. 2. The factor (logs)!/2 in
(1.4) is produced by our decreasing 6,. We may also
notice that the common weak coupling limit of a, and
a, is identical with the weak coupling limit of the Regge
pole of the ladder graphs obtained by other methods.?!
We conclude from these results that the sum of ladders
is likely to exhibit the expected Regge behavior in the
physical s channel, up to the uncertainty connected with
our (logs)!/? factor.

Tiktopoulos and Treiman® have established bounds for
the absorptive part A(s) of T(s) which are consistent
with (1.5). As these bounds have the form A(s) < const
s, we see that if our (logs)*/2 is really present, it
affects only the real part of T(s). Of course, ReT(s)
and A(s) are not independent: They are connected by a
dispersion relation, However, it is impossible to get
a bound for ReT(s) from a bound for A(s) through a
dispersion relation. Therefore, our results really com-
plete those of Tiktopoulos and Treiman.

2. ANALYTIC CONTINUATION OF THE FOURIER
TRANSFORM £, (z}

Our starting point is an expression for the Fourier
transform f (z) which has been established in Ref. 4.
Equation (2.6) of Ref. 4 gives, in the case of forward
scattering,

En-2

0 ®© 1
f"(z):(iz)n-ifo dql...fo dquj(; ke, foez dea."fo de

n=1

1 L°
X I (€ = €01) J, dx ™S expl-iz(Ax® + Bx+C)], (2.1)

where A, B, and C are positive functions of the €’s and
q’s:
a
o2 9]
9
Yy
(equ +2 —Bb\qk ta, + '3.6.) ,

<qk+ b +Bh>—n2+1.
P 4

~1
=1
1
9 2.2)
1
2]

A=%
c=%
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For simplicity, we have assumed that the masses m
and u are equal and set m = p=1, This assumption
does not affect the generality of our results, The follow-
ing notations have been used:

hel p=1
ak:j%;q,e,, B»:I"‘Z_Dl a;, &=1,¢,=0, (2.3)

Whereas the holomorphy of f,(z) in Imz <0 is a direct
consequence of (2,1), this expression, as it stands,
does not allow a continuation of f,{z) into the upper half-
plane. It has to be transformed suitably before such a
continuation can be performed. Our aim is to continue
f,(2) into some sector 0 <argz < 6 (8= 7/2) and to have
adequate bounds for | £ (z)! in this sector. This is
achieved if the paths of integrations in (2.1) can be de-
formed continuously without changing the value of the
integrals in such a way that (Ax® + Bx + C) moves into
the lower half-plane until - 7 < arg(Ax® + Bx + C) < - 4,

Our transformation of (2.1) proceeds as follows.
First, the contour of the variable x is displaced onto a
ray of the fourth quadrant, for instance argyx=-r7/4,
This brings (Ax? + Bx) into the lower half-plane. Then
the paths of integration of the ¢’s are deformed in such
a way that

(2.4)

The effects of these deformations on A and B have to
be kept under control in order to be sure that:

argC=-0.

~7<arg(Ax?+ Bx) <-4. (2.5)

Once (2.4) and (2.5) are ensured, f (z) can be con-
tinued into O < argz < 6.

As C is a nonlinear function of the ¢’s, the manipula-
tions leading to (2.4) are quite delicate. We shall not
go into the details; we shall only show how the limita-
tions of our procedure arise. According to its defini-
tion, C can be written

n=l
C=2 (n-k)p,,

2.6)
k=1
where p, is a function of the £ first ¢’s:
by =tlla ~kNq, - B,/Vq,P. 2.7

Equation (2.6) tells us that a particular way of ful-
filling (2.4) is to require

argp, =- 6 for all p’s. (2.8)

To see if this is possible, we have to find out if the con-
tours of the ¢’s can be deformed continuously so as to
bring all the p’s onto the rays argp, =—6. To do this, we
have performed the change of variables 4, ~ b, ex-
plicitly. An inspection of the singularities in the p’s of
the resulting integrand shows if it is possible to shift
the path of each p, onto argp, = — 6. This discussion is
straightforward but tedious, and we shall not reproduce
it. We shall only give a qualitative description in terms
of the variables g,.

Suppose we try to shift successively the p,’s onto
argp, =~ 6, starting with the last one, Ppye BS q,,
appears only in Ppys it is easy to bring p,., onto argp,.,
= -~ 8 by deforming the path of Gpeq» 21l the other ¢,’s
remaining on the positive real axis. For moderate
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FIG. 2. The paths of inte-
gration C_; of the variable
Qn.g» As argp, s goes through
(a) increasing positive values,
the positive real axis is de-
formed continuously into
curves of the form A and B
of Fig. 2(a). For argf,.,
just below (r - 6) one gets the
path C shown in Fig. 2(b) and
(b) as argf, ; goes through (r - 6)
this path changes discontin-
uously into the curve D of
D Fig. 2(c). The difference be-
tween the integrals along C
and D is twice the integral
along the circle |q,_!
=| B,.1|/(n— k); this integral
is finite,

(c)

values of 6, the resulting path for p,__, has the form A
of Fig. 2a. In a second step we shift p __, onto argp, .,

=~ §; to do this, we deform the contour of ¢, ,. How-
ever, as g, , appears in 8 _ , the contour of ¢, , has to
be readjusted in such a way that p _, remains on argp,_,
= - 6, We may repeat this procedure step by step, de-
forming the contour of ¢, and readjusting the contours

of g, pa1s - .01, in the kth step.

The question is to know if these readjustments are
always possible. Consider the case of ¢, . The path
C,., of q,., is entirely determined by the requirement
argp, =~ 6 and Eq. (2,7): It depends on the complex
values of ¢,,...,q,., on their respective paths through
Bn_l. It turns out that there is a problem only if a.rg{i"_1
>0. For moderate values of arg8,_,, C,, has the form
A and B of Fig. 2. This form changes continuously if
argh , increases until argB,_, =7 - 6. I argB,.; happens
to cross (7 — 6) the form of C,.1 changes discontinuously
from that of Fig. 2b to that of Fig. 2c, Due to the
singularities of the integrand at ¢=0 and ¢ ==, the in-
tegral along the contour 2c¢ does not give the same re-
sult as the integral along 2b, Therefore, our procedure
works only as long as the resulting complex values of
8., have arguments which do not exceed (v ~ 6).

A detailed study shows that arg8,_, can indeed become
positive and that it cannot be kept smaller than (7 - 6)
for large # if 6 is a fixed constant. However, if a con-
venient n-dependence is introduced, one may ensure
argB,_, <(m -6 ) and one can deform the paths of in-
tegrations in such a way that (2.5) as well as (2.4) are
fulfilled. An adequate n-dependence of 4 is

86— 06 =p/n (2.9)
with ¥ =3v3 /47 and B<7/16, Therefore, f (z) can be
continued analytically into the sector 0 <argz<§6, 6
being defined by (2.9).

n

Our next task is to derive an upper bound of | f,(re'®)|
for 0< 6< 6, According to our preceding discussion,

1 €g 1l
[flre)| <rmt [[de, [ degee Tl (eymey)
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< B fo, lda,| [ als] [l

xexp[rIm(exp(i6)(Ax®+ Bx + C))].  (2.10)

The contours Cj join O to =, they are localized in
known sectors:

1
q,€ C;—~ - 6,<arggq, <w,—-9n,w,=const(7— (2.11)

-

Furthermore, the form of these contours are such that
on C
J

ldq,] <[1/cos(tw,)ld|q,]. (2.12)

The imaginary part in the exponential of the integrand
is a sum of negative terms, Dropping some of them
produces a majorization:

Im[exp(i6)(Ax% + Bx + C)] < ?}i Im{exp(i6)[xe, (1 +x€,)q,
+xe, ]} <= ':El{fx]ek[]x]ek cosw,

+sin(r/4 - w,)] |g, | +sin(r/4 = 6)|x]e}. (2.13)

The definitions (2.2), the inequalities (2.11) and the
facts that 6<6, and argx =- 7/4 have been taken into
account,

After insertion of the bounds (2.12) and (2.13) into
(2.10), the integrations over the |¢l|’s are trivial and
one finds

K, =
[f,(ret®)| < (n—l)x{/; dx

exp[~ vxsin(r/4 - 6.)] }M

x+v,
(2.14)
with
b = sin(r/4 = wy)
S T TOTe COS(.L)’e
s ) (2.15)

=1 ——r——.
K= cos(zw,)cosw,

It turns out that the bound for | T(s)! which emerges
from (2.14) has its best behavior at large s if K, is
bounded for all n. Using (2.11), one finds

K, <exp[constgn!?7], (2.16)

Therefore, all the K,’s have a common upper bound
if B is made dependent on n:

s 1
B 15 i

(2.17)
Combining this with (2.9), we get our final width of
the sector in which we continue f,(z):

T

1
.18
I6 77T (2.18)

8":
Simple bounds for the integral appearing in (2.14) give

K ro-1\mt
———————(n_l)! (———-——O ) if r=1,

v
|f,(ret®)| < (2.19)
K ro\*t .
i (log7) if r<1,
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Here

7, = su (2.20)

1
S — P ¥y %
" [1 * v,sin(r/4 +6,) ] 10

The bound (2.19) is valid if 0< 6<§,,
in (2.18).

3. BOUNDS FOR THE LADDER GRAPHS

6 being defined

The ladder graph amplitude T,(s) depends on s through
s,=s—n’ and the bound we shall establish has a dif-
ferent form if » is such that s, >0 or s <0. We consider
the case s, > 0 first; it is precisely for this case that
the machinery of the last section has been developed.

According to the results of Sec. 2, we are allowed to
shift the path of integration in (1.1) onto argz =9, if
s, 0. This gives

IT (s)| <167*nn _U dr|f,(ret®s) | exp (= rs sing). (3.1)

Inserting the bounds (2.19) into this inequality, we
get a sum of two integrals whose evaluation is sketched
in the Appendix. The simple bounds which are obtained
there have different expressions whether the quantity
(s,sind) is larger or smaller than 1. It is readily seen
that it exceeds 1 for nearly all allowed values of n if s
is sufficiently large. Let N=[Vs ] be the largest integer
which is smaller than or equal to Vs the inequality
5,20 is equivalent to » < N. One finds

s"sin9n>1 for n<N-1if s>36.5.

The remaining s, siné, can be larger or smaller than
1. Equations (3.1), (2.19), (A3) and (A4) lead to

(B & o) )
5, VLZ e \BHg0m) log B
_+_(’)’0—1)"-1:|c

|T (s)| <const

(n-1)1 (3.2)

This inequality holds if » < N-1; it holds also for
n=N if s, sinf, >1. If this last quantity is smaller than
1, one gets an upper bound for | T,(s)| from (3.2) by
replacing the quantity |s,/VN | by 1.

If' s, <0, or » 2 N+1, we apply the techniques of
Ref. 2. The Fourier transform f"(z) being regular in
the lower half-plane, the contour of integration in (1.1)
can be shifted onto the negative imaginary axis

Tn(s):lﬁwzxn](;mdzfn(— iz)exp (zsn). (3.3)

The definition (2.1) leads directly to an expression
for f{-iz). Performing a majorization similar to
(2.13), one gets

-2

™ © 1
fl=i2)<zm [ dgy oo dan, [ deyere [ de

1

-]
ng oo oenﬂ. L dxxzn-s

1
X exp (—zg[xek(xe,,+1)qk+xek]). (3.4)

After integration over the ¢’s, one obtains, in analogy
to (2.19),
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1 1
m=-1)1 zm!

2\~
(log;) if0<z<1,

ifz=1,
fl-iz) < (3.5)

(n=1)1
The expression (3.3) and the bounds (3.5) give

(1 +1 km-l) (1og(2[s,|)*

rr-ll

n
T (s) < const —— [ b
" Is,l

) Bl
+_1_]
(n-1)

for n= N+2. If n=N+1, this inequality is also valid as
it stands as long as |s,,,| > 1. If Is,,1 <1, (3.6) gives
an upper bound for T, ,(s) once s, has been replaced
by 1.

(3.6)

Finally, we have to evaluate the sums of the bounds
(3.2) and (3. 6). For simplicity we assume s such that
both s, sinfy and |Sy,,| are larger than, 1. We write

T(s)=TH(s) +T@ (s) 3.7
with
T0(s)= 5 T,(), TO)=2 T,(s). 6.9
n= naN+1

An upper bound for | T (s)| is obtained from (3.2).
This bound contains a double sum T{s) over » and k:

T(s)—constz an = S ( <Z\/07jn))k

3.9)
It is this double sum which provides the relevant

s dependence of our bound. We show how it can be esti-

mated. We assume s > 36.5; this ensures Vs >1log(r,s)

>1. We decompose T(s) into two parts; the sum T,(s)

of terms which have » < log(v,s) +1 and the sum T (9) of

the remaining terms, »n>log(r,s) +1.

InT \(s) we have (Vi/s ) <(2(2 logr,s)!/?/s) and
(s, /‘f—) <s. This gives

;l(s) <const (—10;:(?5—)2—/— 2 A" "-E i (log(ros )

n% log(r;s)+1 £=0

<const J ): X (tog(r,s))t /21, (3.10)

The last inequality is valid for x <1, As the bound for
| T(s)! we are constructing turns out to diverge if x ex-
ceeds 1, there is no need for a bound of 7,(s) holding if
A>1,

fz(s) is majorized in the following way, assuming
Ax<1:

, AT B L[ s\ *
T,(s)< t >, = 109n
,(s) < cons n>lo¢z(;0¢)+1 s & w ( og \/7)

< const ll X Aloglrgs) < const

A “led

T s (3.11)
After examination of the remaining simple sums con-

tained in T%(s), one finds that we may write a bound

for | T (s)| which has the form (3.10):

[T%(s)| < const —ix (log(rys))t/2 M1,

1 (3.12)
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Our upper bound for | T®(s)}| is obtained from (3.6).
Here again we meet a double sum; it is this double sum
which diverges if A >1., We perform the following
majorization:

1

= A S (log(21s,1)) A
<
n=N+1 Isn‘ }zz.-:é k1 1 - AT (3.13)

According to our assumptions N> (log7,s). This im-
plies that the right-hand side of (3.13) is majorized by
an expression which has the same form as (3.11), In
fact, this is true for all terms of T%)(s). Therefore,

s-lih

A
5 s (3.14)

T®@ (s) < const

Combining (3.12) and (3.14), we get our final result:

A

T (3.15)

| T(s)] <const (log{r,s))t/2s1er,

It is easily seen that (3.15) is still valid if 0 <s,sinf,
<lor 0>s,, >~-1, Therefore, the only limitation to
the validity of (3.15) is

5>36.5.

The divergence appearing in the bound (3.15) as
x— 1 has already been encountered and commented in
Ref. 2. The s dependence of (3.15) is discussed in Sec.
1.

APPENDIX

The two integrals we have to estimate are

I (x) :_/:dr(log 770‘)".1 exp(- 7x)

and

(A1)

L(x) :1; dr ;%3 exp(—7x). (42)

If x>1, we transform I, as follows:
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I (x):'l-_/-"dr(log ’ﬂ) n-lex (—r)<—1—/ldr(lo ic—rl)"-1
1 xJo o P +Jo g P

n=1 x - e
+ (lg_g_(x{\:f_L))__ fx dre™ < sz_l)‘ ZJ; ’,:—, (tog(xr )

+ 1 Qogler )

" o (A3)
If x<1, we write
1/" ( xro)"“
< — —
I,(x) Jo dr| log p”
n=1 1
=n-1)1 23 = (log(xr,)). (A4)
ro0 kI
For L{x), we use
L(x) <ﬁ dre'”:?l exp(~ x) (A5)
if x>1 and
L) <f1 ar <1 (A6)

if x <1 and n> 3. It is not necessary to discuss the case
n=2 because we are interested in large values of s. In
our applications, x =s,sinf , and the situation x <1
never appears for =2 if s,sinf,>1, i.e., §>11.3.
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King and domino polynomials for polyomino graphs
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For the purposes of treating several enumeration problems of lattice dynamics, king and domino

polynomials are defined for a chessboard, polyomino, or square lattice of arbitrary size and shape. These
polynomials are shown to be closely related to the partition function of the dimer statistics, the number of
Kekulé structures, or maximum matching number. Several recursion formulas are found. Interpretation of
these newly proposed quantities is given, and the possibility of extending them to the important physical

models is discussed.

INTRODUCTION

Although the rook polynomial has been known as an ef-
fective means of considering the enumeration problems
of chess and Japanese shohgi games, it apparently has
not been utilized in the mathematics of the important
models of physics and chemistry."?

We have proposed the king polynomial for enumerating
the number of ways for putting nontaking kings on a giv-
en polyomino, square animal, or chessboard of an arbi-
trary size and shape. Interesting mathematical features
including recursion formulas were found. It turned out
that the king polynomial is closely related to several
important enumeration problems, i.e., the number of
maximum matching over a square lattice graph (paving
dominoes), the partition function for the magnetic prop-
erties of transition metal crystal (dimer statistics),® the
kinetics of adsorption of molecular oxygens onto a metal
surface,® and the stabilities of unsaturated hydrocarbon
molecules (Kekulé structures).>®

1. POLYOMINOES AND SUBGRAPHS

The graphs with which the present paper is concerned
are polyominoes (square animals) and their subgraphs
derived by deleting squares and/or edges. A polyomino
which is generated by the stacking of squares (hereafter
called as cells) of equal size may also be called a
chessboard although its size and shape are varied as
graphs I and II.

c]

d

I I

With respect to deletion of a particular cell ¢ in graph
G several subgraphs are defined as follows:

G —c is obtained from G by deleting cell ¢, namely, by
deleting those edges of ¢ which belong only to c.

G ©c is obtained from G - ¢ by deleting all the edges
which were contained or incident to cell ¢ in G.”

G B¢ is obtained from G ©c by deleting all the branch-
es (let us call this process truncation of G Sc), or from
G by deleting cell ¢ together with all the adjacent cells.?
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Examples of these subgraphs are shown for graph II
and cells ¢ and d.

Il-c IIec [ =1y
L1 [ ]
| L .
II-d I1ed n8d

Polyominoes can be classified into even and odd ones
according to the number of the vertices but not that of
the cells (see Table I). Graph III is odd. We call an odd
polyomino as type D. An even graph with N (=2m) verti-
ces is called a Kekulé graph if one can choose such a
set of m disjoint edges that span all the N vertices as in
La. We call this pattern a “Kekulé pattern.®” In a later

I.a

discussion Kekulé graphs will be classified into types A
and B. A non-Kekulé polyomino is called a type C.
Graphs I, II, and all the subgraphs of II explained above
are Kekulé graphs, whereas even polyomino 1V is type
C (see IV.a). Note that a rectangular graph [m,n|'°
=[n,m] is a Kekulé graph unless both m and n are even.

IV.a

111 v

2. KING PATTERN AND KING POLYNOMIAL

A king can take on any of the eight neighboring cells.
A number of distinct patterns as 1.b, called by “king
pattern,”

O

o

Ib

can be obtained by putting 2 nontaking kings (depicted

Copyright © 1977 American Institute of Physics 1485



TABLE 1. Classification of polyomino graphs.

Pattern
Example Type King Domino
Ko (X)=Dg(X) A O O
e
Kekulé
Ko (X) =De(X) B o} O
f even<
tlon-Kekulé C O xa
polyomino<
odd D @] x
\

2 x means that the domino polynomial is not defined.

with circles) for a given graph. Discussions in this
section are applied to all types of polyominoes.

Define the nontaking number #(G, k) as

7(G, k) = < number of king patterns with k> .

nontaking kings for graph G (1)

For the sake of the later discussion let us define
7(G,0)=1 (2)

for all the cases. This means that a polyomino graph
itself can be interpreted as the king pattern with 2=0
(see Fig. 1)."

The king polynomial K (X ) for polyomino G is defined

as

k
m

K (X)=27(G,k)X*, 3

B=0
where %, is the maximum number for 2, which does not

King pattern Kekuié pattern

«—> — ) €« ]—r
—t —q
e GH I
o o &> Q > E:
«—> l >
ol Jo L]o
o o) «> o €«
@
1) <> o) <>
r(G.2)=4 rG.1)=6

FIG. 1. One-to-aone correspondence between the king and
Kekulé patterns. The nontaking number #(G,k) is also ex-
plained with G as 1.
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exceed a quarter of the number of the vertices in the
graph. For graphs I and II we have

K(X)=146X+4X7,
K (X)=1+10X+22X2412X°%4X 7,
Note that

Rm
KG(1}=§07(G,J€)

- <number of the king> (a)

patterns for G
Let g, be the number of king patterns with a circle (king)
assigned to a particular cell ¢. Then the total number
C(G) of the circles in the set of K(1) king patterns for
graph G with [ cells is

C6)=2 g.. (5)

The number g, is interpreted as a weight of cell ¢ in the
king pattern enumeration. Since each of the 7(G, k) king
patterns with a given value % has k circles, C(G) is ex-
pressed by

km
Cc(G) ::@k -7(G, k)

=K1, ©)
or

[]
2. g.=K(1), (67

where K/, is the firstderivative of the king polynomial (3)
with respect to X. These relations are illustrated below
with graph I as an example.

3/1]3
31113

I.c
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KiX)=6+8X,
C(D=4%x3+2%X1 [from Eq. (5)]
=6+8 [from Eq. (6)]
=14,

It is evident from the definition of the king pattern that
the g, number is equal to the number of the king pat-
terns of graph G E ¢, namely,

g.=Kea(1). (M

By using the inclusion-exclusion principle the king
polynomial for graph G can be obtained from those of
the subgraphs of G as

Ko(X) =Ko {X)+ X K_(X). (8)

In Tables II and III several examples of the king poly-
nomials are given. Extensive tabulations of the king po-
lynomials for smaller polyominoes and for typical se-
ries of polyominoes are given elsewhere.™

For a series of rectangular graphs [m,n] the follow-
ing recursive relations are obtained:

K[l,,,](X)=K[1'n_1](X)+X-K“'n_2](X) (nZO), (9)
K[z,n](X)=K[2.n-1](X)+2X'K[z,n.g](X) (”20)3 (10)

TABLE II. King polynomials and the number of the Kekulé
patterns for several polyomino graphs.

7(G, k)

k=0 1 2 3 4 K1) K(G)

1 1 2 2

G
O
4 1 2 3 3

1117 1 4 3 8 8
1
1 1 4 2 7 7
] 1 6 4 11 11
2 1 9 16 8 1 35 36
]
L v 1 4 1 6 5

2Discrepancy between K (1) and K(G) is due to a degenerate
king pattern. The domino polynomial is Dg(X)=1+10X+16X"?
+8Xx%+ X% and Dg(1)=36.

®Discrepancy between K(1) and K(G) is due to an improper
king pattern which has two kings at the terminal cells, Dg(X)
=1+4X and Dg(1)=5.
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Kion(X) = (L4 XKy 0y (X)) + QX +X 2Ky, pp0(X)
—(X2+XIKpy poat(X) (0Z1), (11
Kigntf(X) = (14 XKy 0o X))+ BX +4X K, (X))
+(X 2= B3X DKy poy(X) = 3X Ky gy (X)
n=2). (12)

It is assumed here that K, (X)) =K.} ,(X)=1 and
K., n(X)=0for alln=0. A general expression for
K, n1{X) is not yet obtained.

3. KEKULE PATTERN AND DOMINO PATTERN

As will be explained later, one can make a one-to-one
correspondence between the king and Kekulé patterns,
as Lb and I.d. Further, if one puts a 1 X2 rectangle
(domino) onto each “double bond” of the Kekulé pattern,
1.d, a “domino pattern,” I.e., is obtained as shown be-
low. The problem of enumerating the

ol |

O

L.b
king pattern

LI - -

= ]
1.d Le.

Kekulé pattern domino pattern

2

number of ways for “paving dominoes,” “paving tata-
mis,®” or maximum matching is thus equivalent to the
counting of the Kekulé patterns, which, together with
king patterns, will mainly be the concern of this paper.

It is interesting to note that for a group of graphs
there seems to be a one-to-one correspondence between
the king and Kekulé patterns as seen in Fig, 1 with
graph I as an example. This means

K (1)=K(G) (G ctype A), (13)

where K(G) denotes the number of the Kekulé (domino)
patterns or, in other words, the number of maximum
matching for graph G. This is almost all the cases for
smaller polyominoes as in Table II. Let us call a Ke-
kulé graph which has property (13) type A, and call oth-
er Kekulé graphs type B (see Table I). Of the set of the
rectangular graphs, the [1,n] and [2, 3] graphs belong to
type A, the graphs with even m and » belong to type D,
and all others belong to type B.

Among a set of the Kekulé patterns for a given Kekulé
graph of type A one can choose a standard pattern in
which the largest number of horizontal (or vertical)
double bonds are chosen as in l.a. By rotating a set of
two or more double bonds circularly arranged one can
get all other Kekulé patterns. For a rectangular graph
as I one can make a one-to-one correspondence between
the king and Kekulé patterns as in Fig. 1. The one-to-
one correspondence (13) is not clearer but can be at-
tained for other classes of Kekulé graphs of type A.
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TABLE IO. King and domino polynomials for rectangular graphs.?

7(G,k) ¢
GP k=0 1 2 3 4 5 6 Kg(1) Dg(1) = K(G)
[2,2]*¢ 1 4 5 —
(2,3l 1 6 4 11 11
[2,4]* 1 8 12 21 —
[2,5] 1 10 24 8 43 41
(22)
[2,86}* 1 12 40 32 85 —_
[3,3] 1 9 16 8 1 35 36
(10)
[3,4] 1 12 37 34 9 93 95
(14)
{3,5] 1 15 67 105 65 15 1 269 281
(18) (74) (107)
[4,4]* 1 16 78 140 79 314 _—
[4,5] 1 20 135 382 454 194 27 1213 1183
(26) (155) (378) (410) (186)

2 For graphs [1,n], see Table II.
b1, 7] is an m x » rectangular polyomino.

¢Graphs with an asterisk are odd and their domino polynomials are not defined.
9For the domino polynomial, only those coefficients which are different from the values of the

corresponding king polynomial are given in parentheses.

4. DOMINO POLYNOMIAL

Relation (13) does not hold in the Kekulé graphs of
type B. For example, the number of the king patterns
K;,(1) =46 exceeds the number of the Kekulé (domino)
patterns K(II) =42. By taking Il.a as the standard Keku-
1€ pattern and by rotating sets of double bonds as in the

1

L]

==

I ——

II.a
case of graph I, each king pattern finds its own counter-

part in the set of the Kekulé patterns except in the fol-
lowing two cases.

Five king patterns II.b-II.f do not have their counter-
parts

D
Ol o)
°
II.b Il.c
Y
(-2X7)
® ® ®
o] ® 0
® ® ®
Jrd Il.e ILf
(-3X79)

in the Kekulé patterns. We call them “improper (king)
patterns” and darken the circles therein. In order to
extend the applicability of relation (13) towards type B
polyominoes, the terms arising from the solid circles
should be subtracted from K.(X) as shown below pat-
terns II.b-IL{.

Now for graph II we are left with one king pattern II.g
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and two Kekulé patterns II.h and IL.i. Namely, two Ke-
kulé

o [ ] [ ] 1

II.g II.h 1.1

patterns correspond to one king pattern. It was found
that this is always the case in which the rectangular
graph [3, 3] or graph V is contained as a subunit of a Ke-
kulé pattern.'® We call a king pattern II.g which has a
circle in the center of the rectangle [3, 3] a “degenerate
(king} pattern”; it is depicted in II.j and VII. The cor-
rection terms for K,(X ) should

o

ol |] ®)

\4 IL.j VII
(+X) (+X?)

be as shown below these patterns, i.e., in a correction
term a double circle acts just as a circle in the counting
of K,(X). As the size of a graph increases additional
corrections would be necessary for condensed degener-
ate patterns like VIII and multidegenerate patterns like
IX, which we are not going to discuss in detail.

[T T T
© l[oﬁ
VIII IX
(+X?) (+2X)
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Thus the domino polynomial D(X ) can be defined as

De(X)=Kg(X) - <improper king patterns

For graph II the domino polynomial is obtained as
Ki{X)=1+10X+22X%+12X %+ X* king polynomial

X
AII(X)= *
-2X2% - 3x°

correction terms from) ( correction terms from
M degenerate king patterns

):KG(X)+AG(X)- (14)

degenerate king pattern

improper king patterns (+

D (X)=1+11X+20X2+9X3+ X ?

By definition we have
D,(1)=K(G) (G €< type A,B). (15)

A type A graph does not have any correction term in Eq.
(14), and we have

Do(X)=Ks(X) (G<type A). (16)

Recursion formulas are also found for the domino poly-
nomial but are not given here,'” as they are not as sim-
ple as that of the king polynomial. Some special recur-
sion formulas are given here for rectangular graphs:

Dy, X) =Dy pf(X)+ X - Dy ol X)) (0=0), (17
D[2,2n+1](X)=(1+3X)D[2.2n-1](X)
+(X—2X2)D[2,2,,_3](X) m=1 (18)

Dy (XY =(1+ XDy, 1. (X)) + (8X + XZ)Dy, penr(X)

(X +2X 21 XDy 1n(X) 4 (X =2X2-X?)
XDy g (X)) + (=X 2+ X34+ XD, 1(X)
n=3). (19)

It is assumed here that D, ,i(X)=D;_, ,(X)=1 and

D¢, ,(X)=0for alln=0. Expression (19) can be shown
not to be factorized. The domino polynomials for smal-
ler polyominoes are given elsewhere.!?

5. WEIGHT OF THE CELLS

As implied in Eq. (5), the g, number, which is ob-
tained from Eq. (7), is a weight of a particular cell ¢ in
the king pattern enumeration. An example is given for
graph I as in I.c. Since relation (16) holds for a polyo-
mino of type A, g, is also a weight of cell ¢ in the Keku-
1é (domino) pattern enumeration.

For a polyomino of type B, discrepancy arises be-
tween the king and domino polynomials, and also be~
tween the contribution of a particular cell in the enume-
ration of the numbers of king and Kekulé patterns. The
former discrepancy could be remedied by the introduc-
tion of improper and degenerate patterns. The latter
correction is made as follows. Let i, be the number of
improper king patterns with a (solid) cell ¢, and let d,
be that of degenerate patterns with a double circle.
Then for each cell of a polyomino G of type B we have

ge~1.+d,=K(GOSc), (20)

where K(G ©c¢) is the number of Kekulé patterns of sub-
graph GSc. Relation (20) is shown below with graph II
as an example,
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domino polynomial

15[ 8]12 -1-3[0 14512
6| 2| 5|1 + ol 1jo}s] = 6/ 3 5] 6]
15| 8li2 -11-3[0 14[5]12

1 H 1

2 g.=94 2(d, ~i)=~12 2 K(G©c)=82

By analogy with the derivation of Eq. (6’) the following
relation is deduced from the procedure for getting the
correction term A (X ):

1

2i(ds=ip)= (1) (21)
Recall the definition of D (X)),

Do(X)=K(X)+As(X) (14)

and we have
Dy(X)=K5(X)+a5(X), (22)
which gives

D4(1) =K 4(1) + AL(1) (23)

14
=ZC>(gc+dc—ic), from Eqs. (6) and (21)

]

=2 K(G©c), from Eq. (20). (24)
In the above example we have
Ki(X)=10+44X +36X2+4X3,
Al(X)=1-4X-9X72,
and
Di(X)=114+40X +27X24+4X 3,

from which the numbers 94, -12, and 82 are obtained
by the use of Eqgs. (6’), (21), and (24), respectively.

6. DISCUSSION

The maximum matching problem over a square lat-
tice, the domino paving problem, and the enumeration
of the Kekulé structures are mathematically equivalent
to the enumeration of the partition function of the dimer
statistics. All these problems deal with the fully cov-
ered lattice and have been solved rigorously for an ar-
bitrary two-dimensional {x, m] lattice.'®"® Although
enumeration on a partially covered lattice is physically
much more interesting,?! breakthroughs for rigorous
solutions are still being sought.*'*272¢ For characterizing
the topological nature of arbitrary graphs the present
authors have proposed the idea of nonadjacent numbers
and topological index, which can also be applied to these
problems.” ! The king pattern and king polynomial are
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SQUARE ANIMAL SQUARE LATTICE

POLYOMINO
|
B Adsorption
(partially covered) of atoms
Cell-eating-
worm @) (fully covered)
Dimer
Chess Fa statistics
strate
¥ O * Paving
dominoes
i Maximum
King pattern matching
King polynomial

Kekulé pattern
Domino pofynomial

FIG. 2. Relation between the partially and fully covered square
lattice problems through king and Kekulé patterns and through
king and domino polynomials.

involved in the partially covered lattice problem but
have a close relationship with the fully covered lattice
problem as symbolically illustrated in Fig. 2. Note also
that the king polynomial defined for a polyomino is rela-
ted to different types of square lattice problems.
Namely, the square lattices corresponding to the same
polyomino are different in size as shown in Fig. 2.

Thus the king and domino polynomials, if extensively
studied, might play an important role for correlating
the fully and partially covered lattice problems. We are
also attempting to extend the analysis of these polyno-
mials to three-dimensional and infinitely large systems.
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A new derivation of the complete set of the Einstein~-Maxwell field equations is presented which involves
neither a variational principle nor the existence of a vector field (the so-called 4-potential). Unlike previous
derivations, this derivation can therefore be used to motivate the Einstein-Maxwell field equations
independently of the assumption of the existence or nonexistence of magnetic monopoles.

1. INTRODUCTION

In the general theory of relativity the field equations
which purport to govern the interaction of the gravita-
tional and electromagnetic fields, in regions devoid
of sources, are the source-free Einstein—Maxwell field

equations (with cosmological term), viz,,
aGl + bgt? + 2c[F"FI, - 1 gV (F™F,)] =0 (1.1)

and
Fi,,=0, 1.2)

where a, b, c are constants, G/ is the Einstein tensor,
the vertical bar denotes covariant differentiation,

Fiy=%,— Y50

¥; is a vector field, and the comma denotes partial
differentiation, It is well known! that the identity (1.3)
is equivalent to the condition

iabe —
€ F 5. =0.

(1.3)

(1.4)

The full set of the Einstein—Maxwell equations is thus
(1.1), (1.2), and (1.3), or, equivalently, (1.1), (1.2),
and (1. 4).

In the presence of sources these field equations are
usually modified. If it is assumed that magnetic mono-
poles do not exist, then the right-hand sides of (1.1)
and (1. 2) are augmented by appropriate source terms,
while (1. 3) [or (1.4)] is unaffected. However, if mag-
netic monopoles are assumed to exist then (1.1), (1.2),
and (1. 4) are all augmented by appropriate source
terms. Under these circumstances (1. 3) is no longer
a consequence of the augmented (1. 4), which imme-
diately implies that we cannot infer the existence of a
vector field ¥, for which (1, 3) is valid.

It is well known that it is possible to derive (1.1) and
(1. 2) from a variational principle with a suitably chosen
Lagrange density L if there exists a vector field ¥ for
which (1,3), and hence (1.4), is valid, This is usually
accomplished in the following manner,

If L is a scalar density of the type

then we may associate with it two sets of Euler—
Lagrange equations
EY(L)=0 (1.86)

and
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E}(L)=0, a.m
where
oL L4 ok
iry__ & 4 1yt
E (L) ag” kz:{ ( 1) ox I axﬁk
— (1.8)
Oy hyveeny
and
. oL s o* aL
EYL)y=—- = + — 1)kt . (1.9
() Y, Z% 1 Tt ox 34)1.11"'& 1.9

Since L is assumed to be a scalar density of the kind

(1.5), the following is an identity?
2EH (L)), =- FYEML) - y*EML),. (1.10)

I, in particular, L is assumed to be of the special
form

L=aVgR-2bVg+cVgFYF,,

then (1, 6) and (1,7) reduce to (1.1) and (1. 2)
respectively.

(1.11)

In view of the physical significance of the Einstein—
Maxwell field equations, an important problem is to
determine those conditions which ensure the inevitabil-
ity of (1.1)—(1.4),

We draw attention to the fact that L, given by (1.11),
is a scalar density of the general kind

L=1(g:i5;85,15815,m5 $i, 1) (1.12)
for which
E”(L):E”(gaDanb,c§gab,c¢§d)a,b)- (1.13)

With these comments in mind, we cite the following re-
sults. ? The only scalar density of the kind (1, 12) for
which (1,13) is valid is
L=aVgR+aVg(R*-4R;;RY + R,,,, R™)
+ BeHRARIY, R pn+ M, 1.14)

where a, o, B are constants and M is a scalar density
of the kind

M = M(g,5; Ya,0)- (1.15)
In this case (1.6) and (1.7) reduce to
avgGY=2aM/ag,, (1.16)

and
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EY(M) =0, 1.17)

respectively. In order to restrict M we can proceed in
two different ways., On the one hand we could demand
that

oM 1 thpi _ L if
P bWeggt -2cV/g[F?FI, - 5g"(F™F,)]
and then attempt to find M. This would ensure that we
obtain (1.1), However, in this case (1.17) may not re-
duce to (1. 2). On the other hand, 4 we could demand that

E'(M)=4c(VgFY),, (1.19)

in which case we would obtain (1.2) from (1.17), but
(1,16) may not reduce to (1.1), It transpires that (1. 18)
and (1, 19) are equivalent and they each imply that

(1.18)

M=cVg FYF; + " F, F, - 2bVg, (1.20)

where ¢, y, b are constants. Consequently, in either case
we inevitably obtain the Einstein—Maxwell field equa-
tions, the coefficient of ¥ not contributing to either
(1.16) or (1.17).

Recently Horndeski® has considered a slightly differ-
ent problem, viz., to find all E¥(L), E*(L), where L
is of the kind (1. 5) for which

EY(L)=E" (8435 &b, 03 Zaty o3 Va3 Ya, b3 Ua, 00), (1.21)

EYL)= Ei(gab;gab,c;gab,cd; D3 Vs, 53 Yo, 0¢) (1. 22)

EHL)=Vg F¥ , if Rip,=0, (1.23)
and

Ei(L);;=0, (1.24)

The motivation behind (1. 21) and (1.22) is (1,1) and
(1. 2), while (1. 23) is motivated by the experimentally
accepted validity of Maxwell’s equations in flat space—
time. Finally (1.24) is motivated by the physically
accepted evidence of conservation of charge. In fact
the violation of (1.24) has been used to reject® various
covariant generalizations of Maxwell’s equations.
Horndeski has shown that the general solution to this
problem is

V(L) =avg GY + bVggH + 20 g [P~ 4 g"(F™F, )]
+ T‘/EG;:fb:g“(FazF‘lRfkbc + Fabldelc)a
(1. 25)
and

EY(L)=4cVg FY ,+27Vgdiski F R, | (1.26)

where a, b,c, 7 are constants, in which case (1. 6) and
(1.7) do not reduce to (1.1) and (1. 2), and so (1.21)—
(1. 24) do not uniquely chavactevize the Einstein—
Maxwell field equations.

However, as has been pointed out, " some physical
field equations may not be derivable from a varijational
principle so that an assumption to the effect that the
particular field equation we seek is obtainable from a
variational principle, as was assumed heretofore, may
not be justified a priori, Furthermore, the possible
existence of magnetic monopoles has recently received
considerable attention, ® As we have seen, if magnetic
monopoles do exist, we are not justified in inferring
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the existence of a vector field ¥, for which (1, 3) is valid,
and, without a vector field, (1.9) is meaningless. Con-
sequently, a motivation of the Einstein—Maxwell equa-
tions which hinges on the existence of a vector field
cannot be used if monopoles exist,

With these two objections in mind, fthe problem of
determining an altevnative set of conditions which en-
sure the inevitability of (1.1), (1,2) and (1.4), without
the a priovi assumption of the existence of a vector
field fov which (1, 3) is valid, will be investigated. In
particular we shall be concerned with the following
problem. Find all tensor densities B?, C*, A% for which

(1) Bi :B‘(gab;gab,c;gab.cd; Fablc)’

Ci:Ci(gab;gab,c;gab.cd; Fablc); (lo 27)
A¥ :A“(gab;gab,c;gab,cd; Fu),
where Fy;=— Fy;
(i) if Ryjp=0,
then Bf=Vg F¥,, and C!'=¢'"%F,, . (1.28)
(iii) B*;;=0 and C';=0; (1.29)
(iv) AY);=af, B*+p,Ch (1.30)
where of,, B, are tensors and
oty = (g Fa)s Ba= B gan Fan);
(v) AY =A%, (1.31)

The source-free field equations are then assumed to
be of the form

AY =0, B'=0, Ci=0, (1.32)

Condition (ii) is motivated by the experimentally ac-
cepted validity of Maxwell’s equations in special rela-
tivity, Condition (iii) is motivated by, and interpreted
as, conservation of charge, both electric and magnetic.
Condition (iv) is motivated by the requirement that the
divergence of A/ should vanish whenever “Maxwell’s
equations” B =0, C?=0 are satisfied. ’ [This should
also be compared with (1, 10) when (1, 24) is satisfied. |
Condition (v) is motivated by the fact that the “Einstein
equation” A* =0 is usually assumed to be symmetric.

In this paper we prove the following:

Theovem: If conditions (1.27)—(1,31) are satisfied, '
then (1. 32) are precisely the source-free Einstein—
Maxwell field equations (1.1), (1.2) and (1. 4).

This theorem can therefore be used to present a
motivation for the Einstein—Maxwell field equations
which is independent of the assumption of the existence
or nonexistence of magnetic monopoles.

2. DIVERGENCE-FREE VECTORS

In order to solve (1.27)—(1.32) we shall first deter-
mine all vector densities A' for which, in a four-dimen-
sional space,

A =AM g04; 8ut 3 Gaby ot5 Favic) 2.1)

and
Ai 1i — 0. (2- 2)
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We introduce the following notation which will be used
repeatedly in the sequel, without specific mention, K
a... is any quantity, then

AL L T NYL:T. S
and
0l e =0l /9 F .,

in which case we clearly have

B R Ll

and

seciabyo_ _ a"';ba.c

In view of (2. 1) and the fact that A? is a vector den-
sity, we see that A% and A¥*»¢ are each tensor den-
sities and, furthermore, satisfy the invariance identity!!

Atsabyod +Ai;ad.bc+Ai:ac.db:0’ (2.3)
which implies that
Ai;ab,cd:Ai;cd.abc (2_4)
Written out in full, (2, 2) reads
A{;ab'mgab,cdi +A”ab'cFablc,i + (aA‘/agab.c)gab,cl
+ (8A"/3845) 8ap,1 = 0. (2.5)

Differentiation of (2.5) with respect to g,y o4 and F,,
gives rise to
Abiadicd 4 adiabic 4 Aciabdi _ (2. 6)
and
Ai;ab,c+Ac;ab.i:0’ (2.7)
respectively.
We are now in a position to prove the following,

Lewmma: In a four~-dimensional space (2. 1) and (2. 2}
imply that

Abiabodirs, tu_q (2. 8)

Aliabors i lipam o (2. 9)
and

Abiabcirs tinfskl g (2, 10)

Proof: The proof of (2. 8) is essentially the same as
that presented elsewhere, * and so will not be repeated
here,

We establish (2. 9) by noting that, from (2.7),
Alishairs i Lipam g totg)ly skew-symmetric in ictim,
which in a four-dimensional space, implies that it is
identically zero.

To establish (2.10), we first note that (2. 7) implies
that Atehcirsibhkl jg skew-gymmetric in ict, so that
we need only restrict our considerations to the case
when ict are all distinct and equal to 1,2,3 (say). We
now turn our attention to #jkl, and in particular to the
number of 4’s it contains. Clearly, by (2. 3), if kjkl con-
tains three or four 4’s, then A!iedcirstithil yanigheg,
We thus need consider only that situation in which hjkl
contains at most two 4’s, in which case the remaining
two or more indices must be selected from 1’s, 2’s,
and 3’s. Furthermore, by (2.3), it is easily seen that,
without loss of generality, we can always ensure that
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the #j indices in A!snci7siHihhRl 4pe taken entirely from
1’s, 2’s, and 3’s, An elementary argument involving
(2. 6) and (2.'7T) now establishes (2.10), which completes
the proof of the lemma.

From (2. 8) and (2, 10) it is clear that
Abiabodirs, kb Im __
and
Abiabodirs, tiky 7 _ 0,
in which case
Ai;ab,od:rs.t:alabodrst(ghk;ghk") (2.11)

where a!®?"st hag all the symmetry properties of
Abiaholirst and is also a tensor density, By virtue of
the tensorial character of «*?7f it is easily estab-
lished that'?

qlededrst oz“b”'S’(gM). 2.12)
Integration of (2, 11) yields
Ai:ab.cd___a‘ﬂbd”SfFrs”+ pi“bcd(gu;ghk',), (2.13)

where pi%%f is a tensor demsity, in which case, ! in V,,
piavet _ g
Integration of (2.13) now gives rise to

Al = o', Zapyca T 1 (a5 Eaey 15 Frnin)s
which by virtue of (2.3) can be rewritten in the form

AP =5 o', Rogsa + 0 (Zhes Fren)s (2.14)
where o' is a tensor density.

From (2.9) and (2.10) it is also clear that

Ai;ab,c;rs, ARy Iipaym 0

and

Afiabcirs, tihk 3ipq uv 0,

which, when applied to (2. 14), account being taken of
(2.12), implies that

fiabycirs, tihky b tiabycirsy tihked . diabycirs, ti kR, 1
A =a (g’q)

=qa

(2.15)

In view of (2.7) it is easily seen that At cirséithi jq

skew-symmetric in icfl, which, in a four-dimensional
ictl

space, implies it is proportional to ¢'¢*, i.e.,
Oli;ab.r:;'rs, t;hk,lzeictlaabrshk, (2_ 16)
where o®**™ g a tensor, a¥"¥ =% (g ) and
Gabrshk —_ gTsebhk _ _ akkrsab: - abarshk‘ (2. 17)

Integration of (2.16) then yields

fiabyoirs t tctl

_ brshk iab .
o =€ T Fhkll +pu a cr“(g}uz)ghk.l))

which, in view of the fact that p!**¥5* is a tensor den-
sity with an odd number of indices, !* reduces to

afiabcirs

13 :eictlaabrshkFM”‘

(2.18)

By integrating (2. 18) twice and applying McKiernan’s
result, we thus find

01‘ = (1/3 ! )elc”a”rsthkHFrslt Fablc + )\‘achablc ’

(2.19)
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where A2% {g a tensor density, A'#t=)#%(g 3 and
alabe _ _ yeabt _ _ yilac (2. 20)
From (2, 19) and (2. 14) we thus find
Ai — _g_aiabcdrstFrs“ me
+(1/31) P IRE, B Fopre T A F,, .
2.21)

In order to obtain A* explicitly, we shall now evaluate
Afabe | qabrstk and febedrst gl of which are tensorial
and concomitants of gy;.

The most general tensor density of type (4, 0)
which is a concomitant of g;, alone is'®

Kiabc: C“/ngagbc +3 ‘/Egibgac +y \/Egicgab + Geiabc,
(2.22)

where a, 8,7, 8 are constants. In view of the fact that
Afe%¢ must also satisfy (2. 20) we thus find

y=0 and B=-q,

in which case

Aiachab!czza@F”u+ 5E‘achablc° (2. 23)
It is easily shown that
(A1*F p10)14 = 0. (2.24)

We now turn to &,,,; where the latter satisfies
(2.17). In view of the fact that a,y,, is a tensor and a
concomitant of g;; the associated invariance identity'¢
gives rise, in the usual way, to

Saabrshk + Fparshk + O rdashi + U sbranr + A pbrsar + Qpprsha
— q pe be
*gabg’ O parshe tL4r& O bashr t 2.8 Oy branr

pa P
+gahg apbrsqk+gakg apbrslla:

which, in view of (2.17), reduces to

20, 5rsn T Urvasn t Xsorone T Unprsar T Casrona

=HBar Mosak ~ Sas Horne = Zan Korrs +ga§ Hanrss (2., 25)
where
Hpsnn :gpqapbqshk' (20 26)

In (2. 25) we interchange @ and b and subtract the result-
ing equation from (2. 25) to obtain

4aubrshk =&ar Hosne — Sas Horme — Zan K orrs +gak Honrs

- gbr p‘ashk +gbs “-ay-)uz +gbh uakrs - gbk “anrsv (2a 27)
Furthermore, from (2. 26), we see that
Sosme =M g (pnlor— Snlsp) T #gbigs;gmgmf””, (2.28)

where A, p are constants,

We shall now turn to @ygpmrss, Where the latter is a
tensor density, is a concomitant of g, and has all the
symmetry properties of A¥%%7s ¢ In this case the
appropriate invariance identity gives rise to

3aiab¢drst + Aaivearst + Ubgicarst + U eabidrst + Agapcirst
+ Oropotist T Qsgpotrit T Aavodrsi = Aravedists (2.29)

where
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pa
(4t Vpasoarst T &o1Vpagoarst + Eei Upavatrst

Arabedist =&
+ 241 Qpavearst T 8rifpabodast T Est Ypabodrat
+gtiapabcdrsq]- (2.30)

In view of the symmetry properties of o,p. 4, (2.29)

reduces to

Xrgbotistt Cggpoarit = Arapotists

from which we obtain

20540carit = Mraveaist T Mravotsit = Miabodrsts (2.31)
If we define
Y
pbcdrst =8 O}pabcdrst (2 32)
and
Bapeast =8 °* Upavodasts (2.33)

we see that

}‘rabcdlst =8qi Pocrst +gbi Pacdrst +gct Paavrst +gd! Pogprst

+ &ri Baveast = &si Baveart - (2.34)

From (2. 31) and (2. 34) it is easy to establish that

O gupearie TR = 3(28,; Pooarst + ZasPooarit

~ &5t Basoart) F 7 PR, (2. 35)
We shall now evaluate p,4,:, Which, by (2,32), may
be expressed in the form

# (2. 36)

—— L paq
Poearst ==~ 28 O‘bptwdrst .

The invariance identity associated with p, s gives rise
to
3Poearst T Posgrst + Pacorst T Proavss T Pscarse + Pictrss = Mpcarsts

(2.37)
where

Abcdrst =& N[:‘s’bc ppqdrst + Svd ppcqrst +gbr ppcdqst
+gsb ppchqt +gbt ppcdrsqL (Zo 38)
In view of the symmetry properties of Pyuysss (2.37)
reduces to
Ppearst T Proavst T Pscdrvt = Nogarsts

from which we obtain

20rcavst = Mpcarst = Ascarsts {2.39)
If we define

Ogpst =& P Ppatrst (2. 40)
and

Batst =8 " *Ppotasts (2. 41)
we see that (2. 38) can be expressed as

Mocarst =&beUarst + &saCerst + or Boast = &bs Boars . (2. 42)
From (2. 40) and (2. 36) we note that

Cgrst == 387 8™ O praarst = 58798 ™ Qanuparsts (2. 43)
in which case it is easily seen!? that
Agrst = aVg (8as8ri— Bar&st) + V&us grjgskgnG”“, (2. 44)

where a, b are constants, In a similar way (2, 41) and
(2. 36) imply
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Batst == 328%™ ¥ praaasts (2. 45)
in which case
Betst=CVE (38ca st = Lot 8as— Bt Ecs)s (2. 46)

where c¢ is a constant. Furthermore, from (2, 43) and
(2.45) we find

gdrad'rst == %g Cdﬁcdsty
so that
a=c, (2. 47)

Substitution of (2.42), (2.44), (2.46), and (2,47) in
(2. 39) will thus determine p,gps¢ -

We shall now evaluate B,,4,¢, defined by (2.33). The
invariance identity associated with B,,4,; gives rise to

3Bavoast + Pracast + Bovasst + Bascast T Bssodar T Prooasa = Aavoast

(2. 48)
and

3Bssotat T Psvodta T Bsvctas t Psptaac + Bstodas T Btvodas = Bsvodat »

(2.49)
where
Aspoast =8 ™[ 8ab Bunotst + Lac Bronast + LaaProcss
+ &as Prvoant + &at Prvosst) (2. 50)
and
B gpotat =& " ZatBsvoam + La1Bsverar + & otBsontar
+243 Banotar T &es Brvotar)- (2.51)

Because of the symmetry properties enjoyed by
Byseast, it is easily seen that (2. 48) and (2. 49) reduce to

3Bavoast T Bsvodat T Brbogsa = Aasedst (2.52)

and
Bsvodat + Bspeata = Bavotats (2.53)
respectively,

In (2. 52) we interchange @ and ¢, add the resulting
equation to (2, 52), and then subtract (2. 53), to find

(2. 54)

From the latter equation we see that a knowledge of
Agpozst and By, 4, will determine 8,;.45s.

From (2. 33) and (2. 45) we observe that

=~ 4810050 = Aascast T Atbedsa ~ Bavodat »

& ™ Bracase =8 ™7 U pmnotest = = 2Bogst » (2.55)
in which case

& ™ Bronase == 28 ™Buangor = Brast » (2. 56)
and

£ ™Brscasn =~ 28 ™Buscsr = Batss » (2.57)

In order to evaluate 4,,,,, all that remains is to
construct

hrg _  he  pe
& Brscart =8 " & P Upnoaants

which, being symmetric in ¢d and cyclic in bed, must
be given by

gMBhbcdkt: O'\/E:(chdgbt_gctgbd-gcbgdt), (2. 58)
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where @ is a constant, K we multiply (2, 58) by g® and
note (2, 55), (2.46), and (2.47), we find

a=c=a, i.e, &™Bycant= Bt (2.59)
From (2.50), (2.55)— (2. 59) we thus find
Agveast == 28a0Patst T 8ac Boast T 8aa Brost

+ 845 Beavt t BatBoasse (2.60)

Turning to By, we note that, by (2. 59) and (2. 55),

& ™Bopoams = & ™Brscanp = & " Prvoans = = 2Bcasp (2.61)
and

2™ Bspomar == 28 ®Brasvac = Bswac - (2.62)
From (2.51), (2,61), and (2. 62) we thus find

Byatar =Atactsd » (2.63)

where the right-hand side is given by (2.60).

We now substitute (2. 38), (2.42), (2,44), (2.46),
(2.47), (2.54), (2.60), and (2.63) in (2, 35), which,
after a lengthy, but straightforward, calculation gives
rise to

QSR | R = 6aVg[2F 1, RS+ F R
F2F, R+ )R]+ 8DF e R,
(2.64)
From (2, 64) it is easy to show that
(asebetritp R )i =0, (2. 65)

We now substitute (2. 23), (2.27), and (2.64) in (2. 21)
and observe (2.2), (2.24), (2.27), (2.28), and (2, 65) to
find

eic”aabrSMFhkllFrsltFablci :0’
from which it is not difficult to deduce that

aabrshk =0,

Consequently we have established the following:

Theovem: In a fourfdimensional space the most gen-
eral vector density A* =A%(g,4; 828, 3 &as, ca5 Fasle) fOr
which 4* ;=0 is

Al= a‘/EF”Ij + Bflabc Foplet )‘etachhhlcRMab
+uvg[2Fte R} + F® (R +2F) R +F " | R],
(2. 66)
where o, B8, A, 1. are arbitrary constants.

We remark that a quantity formally similar to the
expression in square brackets in (2, 66) has arisen in the
work of Horndeski!®? [compare with the coefficient of 7
in (1. 26)]., However, in (2, 686) it is not assumed that
the skew-symmetric tensor F,, is obtained from a
vector field in the usual manner, We also remark that
the coefficients of A and uvg in (2.66) can each be ex-
pressed in the form

{ad t
Gr:tsyula R ubc ’
where H™ is either ¢"* F,, or F'°,
We now introduce the notation

Pl =\/E GtubaFrslaRtubc

rsiu

(2.67)
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and
Ql ___eiachhklthkab . (2. 68)

From the previous theorem we immediately have the
following:

Covollary: In a four-dimensional space the most
general vector densities

B = B* (8415 8ab, o Savy ot Fasle)s

C' = C* (845} 8at, ¢ 3 &as, 015 Fanic)
for which B*|; =0, C*;=0, and

Bl=aVg FY\; if Rypy=0,

C'=be'¥F,, ; if Ry,=0,
are

Bt=aVg FY ,+cP'+dQ,

Ct = bHOF,  + eP' + Q!

(2.69)
(2.70)
where a,b,c,d, e, f are constants, and P, @* are defined
by (2. 67) and (2, 68)

3. THE EINSTEIN-MAXWELL FIELD EQUATIONS

In this section we shall obtain the most general quan-
tities A¥, BY, C!, of,, 8!, which satisfy the identity

Au”:aihBh 4+ 5ihch, (3.1)
where
(i) AY is a tensor density,
A =AY (8043 8o, 03 8at, o3 Laty ot5 Fan)s (3.2)
AH — AT (3. 3)
(ii) B* is a vector density,
B" = B 8453 8ab, ¢3 8av, ot5 Fapic)s (3.4)
BF=Vg FM, if R,;,=0, (3.5)
(iii) C* is a vector density,
C"= C™(up3 8av, 03 8aby ct> Fav1o)s 3.6)
CP=€"*Fy;, if Rym=0, (3.7

(iv) o'y, ', are tensors, which are not both identical-
ly zero, and

ai’l:aih(gab; Fab)’ (3.8)
Bl =B'(gaps Foo)- 3.9

As a consequence of (3.4)—(3.7), the corollary in
the previous section is applicable and B" and C* are
thus given by (2.69) and (2. 70) respectively. By virtue
of this comment together with (3, 2), we see that (3.1)
can be expressed in the form
Ai!;ab. Odgab. odi +A”;abFab,j

i i
L 24 oA

L + D St
ome Saby ci s Sav, i aj

=ty Vg FM 4 3" 0F y + N PP ph QP
(3.10)
where

AMad =g AlI [3 (3.11)
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Aih:COjih'}‘eBih,
ﬂlh:daih+fﬁlh-

By differentiating (3. 10) with respect to g,, o7; we find

(3.12)

Afdiabed | gidiabyjc 4 pgiciabdi _ 0,

which, when combined with (3. 2) and (3. 3) implies, in
the usual way, !° that

Aii;ab.oa':aijabcd (3 13)
2 .
where /2% s a tensor density and
aiiabcd — aiiabod(g”; Frs)ﬂ (3. 14)

With this in mind we return to (3, 10) and differentiate
it twice, first with respect to F,, ; and then with respect

to g, tuy to obtain
Atfiabirs, tu:l\ihph:ab. Birstu “ith;ab. 118 tu- (3u 15)

We shall now show that both Af, and pf, must vanish
identically. From (2. 67) and (2, 68) it is easy to show
that

PS5 4 L S gy o MDD

and (3.16)
Qh;ab. Jirsy tu _ %Ehjkl(gacg bd _ g bcgad) D;?D‘;:,

where
DT§ = 6765 + 5765,

From (3. 3) we obviously have

Aiiiabirs, “‘g g, — Adiiabirs, tu
rsStu

grsgtuy
which, by (3. 15) and (3. 16), reduces to

Vg AIbg Al 9y g Aid gbd 4 i chiva

— Vg Mg ei L oV ata g by 7 hite 3.17)
If we multiply (3,17) by g,;, we find

AN =~ 2V (Vo) g P g™,
from which it follows that

4V g N = Mt (3.18)

This equation clearly implies that A*® must be skew-
symmetric,

We now return to (3, 17) and multiply it by €,;5, to ob-

tain, by virtue of (3,18},
uir:_“ri’ (3. 19)

which, when taken in conjunction with (3,18), gives
rise to

“rs:—\/:éjersib)\ib' (3‘20)
From (3.15), (3.16), and (3.20)we thus find
Atiiabirs, tugrsgtu:4\/_g_ (Ktbgaj - Aiagbj + )\bagji
_Afagbi+)\jbgia). (3.21)
Equation (3.11) implies that
Aij:ab;cd :Aiftod?ab ,
which, when imposed on (3.21), leads to
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At gal Alaiol g b ybaicd gt _ AJaict g by Abiet g ia
— xid;abg ¢ _ Xic;nbgdf + Adc;abgji _ Ajc;abgd( + Ajd;abg ic .
(3.22)

We shall now prove the following:

Lemma: I A is a skew-symmetric tensor which
satisfies AY =) (g,,; F,;) and (3. 22), then

A =aFY, (3.23)
where o is a constant.
Proof: We multiply (3. 22) by g% and let
et = Aiciab g
to find
gadbiol _ pidich 4 yicidb_ yeiib_ _ pob g di 4 jab g dc
(3.24)
Multiplication of (3.24) by g;, thus yields
b = b*° . © 7 (3.25)
We now multiply (3. 24) by g, and note (3. 25) to find
b =gg it , (3.26)
where
B=1g1;0" = B(g4; Fo). 3.27)

When (3. 26) is substituted in (3. 24), we see that
3Aib;od — p\idieb 4 )\ic:db _ )\dc;ib: B(gdbg“ ic _ nggdi).
(3.28)
In (3.28) we cycle on cdi to find
AIBIOl o \EBide 4 yebidi _ yidich 4 ydeiib 4 yeiidd (3. 29)
We subtract (3. 29) from (3. 28) and obtain
inb;cd - }\db; ic _ }\cb;di — B(gdbgic_gcbgdi)u (3. 30)

The equation obtained from (3. 30) by interchanging ¢
with ¢ is added to (3. 30) to yield

BN - \P) = p(ag g te— g Pg% - gitgde). (3.31)

The equation obtained from (3. 31) by interchanging 7

with b is subtracted from (3, 31) to give
inb;cd _ Acb:di + )\ci;db: ﬁ(gd”g ic __gcbgdi). (3. 32)

A comparison of (3.32) with (3. 30) thus shows that
\cisdb — ydbict

which, when substituted in (3. 29), yields
Aib;od + }\ﬂb;lc+)\cb;£ﬂ:0. (3.33)

Equation (3. 33) is now substituted in (3, 30) which gives
rise to

NP = B(g g io— g g ™). (3.34)
We now differentiate (3. 34) with respect to F, to find
B;rs(gdbgic_gcbgdi) :B:cd(gsbgir_grbgis)
2z 2
which, when multiplied by g,,4;. yields
B;Ts: O,
so that, by (3,27),
B: B(gab)’
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which, in turn implies®
B=rconst,

Integration of (3. 34) thus yields
AP =g F i+ gib (3. 35)

where o is a constant and 8%® is a skew-symmetric
tensor and

ﬁib - Bib(grs)j
which implies
JBib: 0

The latter completes the proof of the lemma in view
of (3.35).

This lemma, together with (3, 20), thus implies that

W=aFH, po=-aVgey FY. (3.36)
However, (3.11) implies that
Aidiabicdirs, tu Rurstgac:Aﬁ;ab; od; 7S, tuRurstgac . (3.37)

We now substitute (3.15), (3.16), and (3.36) in (3. 37) to
find, after some calculation, that the following must be
an identity:

o(g PR +gdeib _gibed -g ipivy =,
Since this has to be an identity we conclude that
a=0,
which, from (3. 36), implies that
A= pt =0, (3.38)
identically.
When (3. 38) is substituted in (3. 15) we find

Aij;ab;rs, tu: 0’

which is now applied to (3.13) and (3, 14) to obtain
Aii;ab. od aijabcd(g s)
HSrs8/e
The latter equation is now integrated in the usual way21
to give
AV —afg G + 64 (3.39)

where #*/ = 0¥ (g .- F,,) is a symmetric tensor density,
a is a constant, and G¥ is the Einstein tensor, Our
problem will be solved once we have determined 6/,
which by (3.38), (3.39) and (3. 10), must satisfy

04 = oty Vg FM\ + g™ F,, . (3.40)
We shall now prove the following:
Theovem: The only tensor density 6/ which satisfies
601 = 07 (gyp; Fpp), 6 =67, (3.41)
and (3. 40), where ot,, B, satisfy (3. 8) and (3.9), is

6 =~ \WG[FIPFI, - L gt (FrsF, )|+ uvggt’, (3.42)
where A, u are constants,
Pyroof: From (3, 40) it is easily shown that
it = L7 (oia g I0— oidg ey 4 gi (Hlad, (3. 43)
By virtue of (3.41) we must have
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%\/_E (a(dg b _ a!bgja) + Bihehjab
1
=3Vg (Olj“g i5_ a“’g {a) + thehisz°

We now apply to this equation the techniques used on
(3. 17) {which gave rise to (3.18), (3.19) and (3. 20)] to
find

VE Q=B e, ofb = ob
Bair="Prar Ban=-1VZ €anipa’’. 8.44)
Substitution of (3.44) in (3. 43) thus yields
eii;ab:% g[alaglb_ aibgfa 4 alagib
_ a}bgla + aabg ii]. (3. 45)

If the condition
gifiabicd _ gificd;ad

is now applied to (3.45), we obtain (3.22) with aibicd
replaced by o'* < in which case the lemma following

(3.22) implies that
ot =aF¥, (3.46)

where X is a constant. We now substitute this back into
(3. 45) to obtain

Gij;abzé\/g)\(Fiag"b— Fibgfa+F5agib

- Fibgia 4 pabgidy (3.47)
If we define T by
TH=-\g(F"F!, -~ {gHF™F,), (3.48)
we find
TiHiab = _ L g\ (Figia_ Flagivy pidgda
- Flagi®_ patgH), (3.49)
A comparison (3,47) and (3. 49) thus yields
gisiar _ Tifiad_g
which implies that
g = TH + pti (3.50)
where p¥’ is a symmetric tensor density and
pH =p'(ga).
In the usual way® we find
pH=uvggt, (3.51)

where L is a constant. This proves the theorem in view
of (3.48), (3.50), and (3. 51).

It should be pointed out that this theorem is of inter-
est in its own right since it augments some previous
work?® on uniquely characterizing the electromagnetic
energy—momentum tensor,

We now apply this theorem to (3. 39) which shows that
6 is given by (3.42) and, in view of (3.44) and (3. 46),

ot =AFY B=— Vg hepinF 0. (3.52)
Substitution of (3.52) and (3. 12) into the identifies (3.38)
shows that

c=d=e=f=0, (3. 53)
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which by (2.69) and (2. 70) implies that
Bi - &F“U , Ci =€”abFabU .
We have thus proved the following:

Theovem: The only tensor densities A", B, C! which
satisfy (3.1)—(3.9) are

A”:a\/—EG”—- )\\/’E(Fthjh_ igifFrsts) + “\/'Egij’

(3. 54)

Bi=Vg FH (3.55)
and

ci=€“abFab”’ (3. 56)

where a, ), ¢ are constants,

The theorem stated in Sec, 1 is clearly an immediate
consequence,
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We obtain some new results on the role played by the classical action in nonrelativistic quantum
mechanics. The results are of the same genre as those derived previously by Nelson from the Trotter
product formula. Here we work with the exact expression for the classical action not the approximate one
as used by Nelson. Our results give a precise relationship between classical mechanics and quantum
mechanics for a fairly wide class of potentials. The results are derived by using the properties of a new
definition of the Feynman path integral 7 introduced in an earlier paper.

1. INTRODUCTION

In a previous paper we gave a new definition of the
Feynman path integral 7 in nonrelativistic quantum
mechanics and developed some of its properites.! We
continue this investigation here exploring the connection
between our definition of 7 and some of Feynman’s
original ideas on the path integral. It turns out that our
definition of J is particularly well suited to answer one
of the early questions posed by Feynman’'s work—the
question of the precise relationship between classical
mechanics and quantum mechanics. One aspect of this
question is the problem of obtaining classical mechanics
as the limiting case of quantum mechanics when 7% - 0.
This aspect was discussed in our previous paper in
terms of the quasiclassical representation, and we shall
only mention this topic briefly here. There is, however,
another related aspect which we now outline.

We restrict our attention to the mechanics of a single
particle in one space dimension. Generalization of our
work to a space of higher dimension than one is
straightforward. We also choose units so that the par-
ticle mass m =1, and Planck’s constant divided by 2,
#=1. Let (P,7) denote the polygonal path, defined for
Te(0,1) by

P =% +(T=jt/n) (v;a = vN/L,

jt/m= T <G+ 1)/ n, (1)

j=0,1,2,..., n-1, where initially ¥; are fixed and
arbitrary, save for %, and ¥,=0.2 We denote by (P,7
+ X) the polygonal path defined by

Pr+X)M =T +X, 7 (0,1, (2)

for a constant X, so that (P, +X)(7={) =X; and
SalP,v +X] denotes the classical action of a particle
of mass unity in a potential V, traveling with a con-
stant velocity along each of the segments of the path
Py +X),

n-1

Z) (7,1»1 / V "')’+X (3)

SalP,y+X]=
! i=0 ZAl

where Af =t/n.

Now let ¥(X, £} be the amplitude for the quantum
mechanical particle of mass unity, moving in the po-
tential V, to be at X at time #. Then, using earlier
work of Dirac, Feynman conjectured that

WX, ) =limN, [ d"vexp{iSy[P, ¥ + X (v, + X, 0), (4)

n- oo
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where N, =(2m Af)"/2 is a normalization constant and

d"y=dvydy, - - -dv,,, each integration being from -
to +.3
In Eq. (4), ¥(X,t) would be the solution of the Cauchy

problem for the Schrédinger equation with potential V.
The first rigorous proof of a result analogous to (4) was
given by Kac for the heat equation with the potential

V.* The corresponding result for the Schrédinger equa-
tion was given in a beautiful paper by Nelson.> Essen-
tially, Nelson makes the replacement

A ‘vip,y+X]ar

n-1 .
=55 [IDYIX oy (7= jt /) vy - v A dT

i=0" it/n
n-1
=2 Vv, +Xat, (5)
=0
corresponding to a Riemann sum approximation to the
potential term and then, making elegant use of the
Trotter product formula, he proves the validity of (4).°
In this paper we make no such replacement, but, by
using the properties of 7 deduced in our previous paper,
we prove the validity of (4) for a wide class of poten-
tials V(-) and a wide class of initial wavefunctions
¥(-,0). In this way we establish a precise relationship
between classical mechanics and quantum mechanics.
This relationship is summarized in Theorems 6 and 7
of the Conclusion.

Our definition of 7 is based upon the properties of
the underlying space of paths for spinless nonrelativistic
quantum mechanical particles. Following previous
authors we choose this path space to be H, the Hilbert
space of continuous functions ¥(7), defined for 7< (0, #),
normalized so that ¥(f) =0, with weak derivative dy/dT
& L0, #) and with inner product (v, ¥) = ¢(dy'/d7)
X(dy/dT)d7. In Theorem 1 we prove that in the inner
product norm topology H is a real separable Hilbert
space, easily realized in terms of Fourier trigono-
metric series. We now give our definition of 7 for
complex-valued functionals f[¥] defined on the space of

‘paths H.

We define the linear map P, :H — H by identifying, in

Eq. (1), v with ¥(jt/n), v H, so that, for j=0,1,2,...,
n-1,
(P,T) =v(t/n) + (T = jt/m)ly(G + 1t /n) = v(it/n) ] A8,
jt/n<T<(@G+1)t/n. (6)
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Let f[7] be a cylinder functional, i.e., a functional

depending upon ¥(o,) for only a finite number of times
oy=4t/m, i=0,1,...,n=1, fl¥l=flv4 ..., 7). For
such a cylinder functional we shall use the shorthand

notation
(7/101 )
N_/(.zl"a/exp(]0 oA

Xf[‘yOy ceer Ypa ]y (7)

whenever this integral exists.

Definition: Let f: H—~C be a functional with domain
H and let (f °P,) be the composition with P,. Then we
define the Feynman path integral 7{f] b

FA=1m7F,[fP,], (8)
whenever this limit exists. We say that fe 7 (PH) iff
this last limit exists.

The above formulation is simpler than the one given
in Ref. 1, which was introduced as an extension of
Foan, the DeWitt and Albeverio, and Hgegh-Krohn' de-
finition of the Feynman integral (see definitions follow-
ing Theorem 2). The formulation in Ref. 1 can be ob-
tained by writing down the Parseval identity for the
right-hand side of Eq. (7) before taking the limit n -«
in Eq. (8). The definition given here avoids the com-
plication of taking the Fourier transform of the func-
tional (f - P,). However, we shall see that the new for-
mulation is equivalent to that in Ref. 1 for all reason-
able functionals. Because of its simplicity we shall
use the new definition of 7. Moreover, the problem of
establishing the relationship between classical mechan-
ics and quantum mechanics is easily expressed in terms
of this 7.

Let (X, f) be the solution of the Schrédinger equation

L2 _ 1 92y
Yot zﬁz

with Cauchy data (X, 0) =¢(X). Then proving the vali-
dity of (4) is equivalent to proving that

+ vixTy, (9

WX, 1) =Flexpf{~ i [ Vv +X]drio[(0) +X]).  (10)
In the following we prove the validity of (10) for a wide
class of potentials V and a wide class of initial wave-
functions ¢. Our proofs exploit the underlying Hilbert
space character of the path space H and the important
property that H has a reproducing kernel G(g, -) € H,
G(o, 7) =t - ovT, where ovT denotes sup{o, T}, the re-
producing kernel property being

A7) = (o),

This last fact, the elementary Lemma 1 of the next
section, and the previously established properties of
Fpan are the crucial elements in our proofs.

(Glo, 7, vreH, wvoelo¢]. (11)

2. BOUNDED CONTINUOUS POTENTIALS

In this section we prove the validity of Eq. (10) for
potentials V and initial wavefunctions ¢ which are the
Fourier transforms of measures of bounded absolute
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variation. The Fourier transforms of measures of
bounded absolute variation are necessarily bounded and
uniformly continuous. When V is the Fourier transform
of a measure of bounded absolute variation we shall
simply refer to V as a bounded continous potential, even
though this is not sufficient to characterize V complete-
ly. We establish this result by proving a theorem (The-
orem 4) connecting our path integral 7 with the path
integral Fp .y of DeWitt, Albeverio, and Hgegh-Krohn.
We first give a concrete realization of the space of
paths H and establish the reproducing kernel property
for H in Theorem 1. We then prove a number of tech-
nical theorems and lemmas by exploiting the results of
Theorem 1. These will lead naturally to Theorem 4.

Theovem 1: H is a real separable Hilbert space in
the inner product norm topology. v« H iff 3 constants
a,, a,, B, cR with ¥, (a +B2) <, such that

(Zsz)
t

T = a{T~ ) +

n=l 27771
2 Bt 2TnT
L, - [1—cos< 7 )] , Telo,t], (12)
and
I3
2= (v, 7):la%+52_/(a‘?,+63,)<°°u (13)
n=l

H has a reproducing kernel G(o, 7) ={ - ov7T, where v
denotes the maximum,

Proof: We prove first that if # is a continuous function
on (0, ) with weak derivative zero and «(f) =0, then
u(7)=0, 7T<(0,f). If « has weak derivative zero on
(0, ), then

{u, vy = f_:u(‘r)b(‘r)dT:O, voe/l(0,1).° (14)

Let {#;} be an approximate identity on R, i.e., {h;}is
a sequence of functions %,;(7) = jh(j7), 7_1 2, ,h =0,
hc Co” and [h(T)dT =1. Defme U¢ by US(7) fé u(T')dT’,
ele, r- €], U(1) =0, otherwise; //2 €~ 0. U is con-
tinuously differentiable on (€,/ - €) and U* has compact
support C [€, f — €]. Then, defining v; = (h; * U), 2;(7)
~ U(7), as j—=, T (¢, /- ¢€) and, for sufficiently large
7, v; =[{0,1). Also partial integration gives

. =t d ; P
z'j(T):—l Fh-(T—T)Ué(T){[T
= [T = YU (D] ‘E+/

TNul(r"ydr’

t-€
== (Tt + QU - €) +f (7= TNu(T"ydT’.

(15)
Hence, v;&/)(0,#) =
0=, ;)= —ult— Ut —€) + ‘fe‘t'e lu(r) [T,
as j—=. (16)

Since u is continuous on (0,1} and lim, ., x«(7) =u(t) =0,
by choosing € as small as we please, we obtain
[Elu(r) 12d7’ =0=u(7) =0 a.e. (0,!). However, u is
continuous => S={7 ¢ (0, #} |u(7) #0} is open. Thus, if
S#®, AS]>0, where A denotes Lebesgue measure.
Therefore, u(t)=0, 7c (0, 1?).
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The crux of the above is that continuous functions on
the interval (0, /), vanishing at one end, are uniquely
determined by their weak derivatives. Therefore, Y H
is uniquely determined on (0, ¢) by its weak derivative
dy/dT  L¥(0, ). However, any function dy/dt e L*(0, 1)
can be written as an a.e. convergent Fourier series

av . g 27m'r>
E(T)-%Jr)_—lx Oz,,cos( ;

+27 B,sin (Zﬂ:ﬁ) , a.e. Tel0,1], (17)

n=l

a,, o, B, being the usual Fourier coefficients with
Ti(of +BY) <.

Consider the function ¥ defined by

ot 2TnT
= - } n i
HT) = ay(T~1) +n_={ Em sm( ; )

a0

25 g;‘:ﬂ [1 - cos(zgm)] , 17<]0,¢]. (18)
n=1

Then the Cauchy—Schwarz inequality shows that the

rhs is absolutely and uniformly convergent in [0, 7], and
so ¥(7) must be continuous and clearly ¥(¢{) =0. We now
show that ¥ has the weak derivative dv/d7. Denote the
Nth partial sum of the rhs by Sy. Then, using uniform
convergence,

+

(¥, v) =lim {Sy, v, Yoe/(0,8)
N-x
= {y, &) =lm{Sy, " = lim Sy, ), VveH(0,¥.
N-ow N aw
(19)

However, {18y ~dy/d712dT~0 as N~ and the
Cauchy—Schwarz inequality for integrals yields

lim <‘SN, vy ={dy/d, v), voel(0,1). (20)
N~a

Combining the last two equations, we arrive at

(v, )y == (dy/d7,v), YovecD(0,1), (21)

and ¥ has weak derivative dy/dT as asserted. From the
first part of the theorem 7 is the unique continuous
function on (0, f) with ¥(f) =0 and weak derivative dv/dT.

It follows trivially that

t ©
dy dvy =~
2 _ ay ay o a2t 2, p2
7 -‘/0deTdT-ta0+2,7I/(an+Bn)<°o. (22)
This proves that H is a real separable Hilbert space in
the inner product norm topology.

The reproducing kernel property follows because
(dG/dT)(0, 7), the weak derivative of G(o, T) =¢ - ovT,
v being the maximum, is given by (dG/d7)(0, T)
=~6(T—0)and ¥yc H

t
(G(o, ), (7)) ==~ / %dr = (o), (23)

the last step following by integrating on a.e. conver-
gent Fourier series term by term.'’ This proves the
theorem. We also need Theorem 2,

Theovem 2: The linear map P,: H —~H is a projection,
and, if I:H —~H denotes the identity, then P, I, in the
strong operator topology on / (H, H), as n—.

1501 J. Math. Phys., Vol. 18, No. 7, July 1977

Proof: From the definition of P, it follows easily that
P,z,:P,,. In terms of the reproducing kernel G(o, 7)
=t - ovT, v being the maximum, we have the important
identity

(P"’}/)(T) ZE:J‘I [G(Tit, T) - G(an! T)] [yj+1 - y]]At-l,

i=0

(24)
where v;=v(t/n), j=0,1,2,..., 1.
From the reproducing kernel property, ¥7, Y € H,

n-1
V', P =23 (Vja=¥)jm -yt =(Py,v.  (25)
J=0
The closed graph theorem now implies that P, is a
projection. !

To complete the proof, we are required to prove that
V={vycHIIP,y~i~0asn-=}=H, For a proof of this
result we refer to Theorem 4 of Ref. 1.

Following Albeverio and Hdegh—Krohn, !? we now
introduce a space of measures on H. We choose as a
convenient o-field on H the o-field generated by the
subsets of H open in the inner product norm topology.

Definition: M(H) is the space of complex-valued mea-
sures of bounded absolute variation on H, pc M(H),
Mf gl =fldpl<e, It Il is a norm on M(H).

We also require the space of functionals on H, each
of which is the Fourier transform of a measure in
M(H).

Definition: The space of functionals 7 (H) is defined
by fe 7 (H) iff fly]=] expl-i(y’, V]du(y), necMH).
We now define 7,y the path integral of DeWitt,
Alveverio, Hdegh—Krohn.

Definition: When fe 7 (H), fl¥]=[exp[-i(y’', VW]du(",
pe MH), Fpan(N) is defined by

FoanP = [ expl- /2Ny I1Fldu(). (26)

We remark here that uc M(H) ensures Fp,u4(f) exists,
For the continuous function exp{- (//2)1172] is Borel
measurable and

| Foan®] = [1aw@)| = 1ull = 1A, (27)

It is not difficult to establish that Il Il is a norm on
F(H). Also, the separability of H implies that if f
€ 7 (H) is the Fourier transform of the measure 4
€ M(H), then i is uniquely determined by f. Thus, 7pu
is well defined. The important properties of M(H),
JFpan are given in Refs. 1 and 6¢. The property which
we are particularly interested in is the content of the
next theorem due to Albeverio and Hgegh—Krohn.

Theorem 3: The solution of the Schrddinger equation

.0 122
= 2 Tl xy (28)

with Cauchy data (X, 0) = ¢(X) = [exp{i aX)dv(a) e L*RY),
with a real-valued potential V[X]= [ exp(i aX) du{a),
U, v being of bounded absolute variation on/(l, is
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WX, ) =T paulexp{—i [ V(D) +X]arte[n0) +X1],  (29)
exp{—z[ V(1) + X drte[v(0) + X]e F(H).

Proof: See the proof of the Feynman~—1t6 formula in
Ref. 1 or 6(c).

Before proving the main results of this section we
need an elementary but important technical lemma.

Lemma 1: For real @, b > 03 a finite constant C(b)

such that
| [, explibr®) dt| < C(b), (30)

uniformly a c (0, ).

Proof: Consider the simple closed contour C in the
complex ¢ plane:

C={tlargt=0, 0<|t|=q
0< ]f'éa}.

0 <argl <71/4,
|t] =a; argt =7/4,

Then Cauchy’s theorem implies ¢, exp(ibt?) dt =0. De-

note the curved part of C by ¢; then we obtain

foa exp(ibt?) dt + fc exp{ibt?) dt - fﬂa exp{— 0%y dl=0. (31)

Clearly, for ac (0, ),

| f exp(~ bt dt| < f exp(— bt?) dt = (n/4b)! /2, (32)

We must establish a similar bound for [, exp{(ib/?) dt.
Putting ¢ =a exp(if) gives

1r/

] f exp(ibt?) dt| < a. * exp(~ ba? sin26) d6

fow/z exp(- ba® sinu) du. (33)

u<w/2, (sinu)/u= 2/7, and so we

=(a/2)

However, for 0<
obtain

| | exp(ibt?) dt} < (a/2) ‘fo"/z expl- 2ba®u/n|du

=(n/4ab)[1 - exp(~ ba® . (34)

When ac (0,1), applying the mean-value theorem to the
rhs of the above gives

| [ exp(ibt?) dt| < ma/4 < 7/4. (35)

When ae[1, %), consider fla) =a{1 - exp(~ ba?)). Then
Aa) is continuously differentiable on [1, ) and f(a) ~
as a—~=. Also, f'(a) =0=exp(- ba®) =(2a% + 1), It
follows that, for ac [1, ),

| [ exp(ibt®) dt| < (n/4ab)[2a% /(2a%b + 1)] < 7/4b.  (36)
Putting C(b) =(n/4b)* /2 + (n/4)u(n/4b), where v is the
maximum, proves the lemma.

We now give the main result of this section.

Theovem 4: F (HYC 7 (P H) and 7 is an extension of
}DAH‘

Proof: Let f € 7(H) be given by Alv]= [ expl-i(+v, v]
xdu(y"), we M(H); then we prove as a first step that
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Folfe Pyl = [ expl- (i/2)(x, P,Y)}du(). (37)
From Eq. (24) we observe that
n-1
(FoP)lv]= [ exp (— i27 Vi =YD - y,-)Af") du(y),
=0
(38)
where ¥ =v'(t/n), ¥;=7t/n), j=0,1,2,...,n, and

Af =t/n.

Fubini’s theorem implies that

:ﬁ“(7')fR[V], (39)

where fz[¥'] is given by

; n=1
fRlY1=N,exp (—é 2 (rin- 'Vj')ZAI"1>

¥ 2At") dv”

-rh ;
/ f exp(z v (7] 1=
-(R+Y()) (R+7;.1) i=0
(40)

¥/ being defined by ¥{ =v;~ 7, i=0,1,2,...,n-1,
d"y" =dvyy - - -dv),. However, from Lemma 1 we de-
duce 3 a constant M, independent of R and ¥’, such that

el < M. (a1)

What is more, we easily see that

‘ Yl

-1
frly'1~exp ( 5 T (via =R At")

i=0
=exp (_ EZ o, Pw')) ’ (42)

as R—~=, The dominated convergence theorem for the
measure [ then yields

- n-l
F.lr=P, _Ile1mN / f exp(;Eo Yia — )% A/")

x[feP,\lvla™y :fexp (— % ', an’)> du(y’),
(43)
as asserted,

We have already seen that, ¥ ¥’ ¢ H, 1P,y - "2

={(, V)=, Py} ~0, as n—=. It follows that,
vY cH,
lexpl- (i/2)(+', P,y ] - expl- (i/2)(v', 2] =0,

as n~x, (44)

Since lexpl~ (¢/2)(v', P,¥)]- expl- (i/2)(¥',¥'}]i< 2, a
second application of the dominated convergence theo-
rem for the measure u yields

‘} nUOPn]—]DAH[fH < f ‘ exp[(_ i/Z)('}/’, PnY’)J

—expl(- /20, ¥)1| ldu(x) |~ 0,
as n -, (45)

Thus, 7 (H)C 7(P.H) and 7 is an extension of Jp 4y,
proving Theorem 4.
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Combining the last two theorems proves the validity
of Eq. (10) for potentials V and initial wavefunctions ¢
which are the Fourier transforms of measures of
bounded absolute variation. Hence, as promised, we
have established a precise relationship between classi-
cal mechanics and quantum mechanics—the one given
in Eq. (4) for the above potentials and initial
wavefunctions.

The restriction in the above result to bounded conti-
nuous potentials seems somewhat unsatisfactory. How-
ever, Theorem 4 has an elementary corollary which
suggests that this restriction is artificial.

Corollary: The solution of the Schrddinger equation
L. S P (46)

"3t T T 2ax?
with Cauchy data (X, 0) = ¢ (X) = [ exp{i aX) dv(a), with
v a measure of bounded absolute variation onR' and a
real-valued potential V[X]=BX +C, is given by
WX, 1) =Flexp(~7 [ VIX + v(D)]dTiolX +(O]]. (4D
Proof: A distinguished role is played by the classical
path ¥* ¢ H defined by

Y1) =(a=BO)(T-1t) - (B/2)(T -
=—(a=BNG(T,0 = (B/2)(T-1)2 T (0,8, (48)

where ¥*(1) == B, 7*(T=0)=q, and ¥*(T=#)=0. [Note
that the map R - H defined by a—*(+) is continuous and
{al¥* € OC H, O open} is therefore open. ]

The following identity obtained by partial integration
explains why »* is important in this problem. For V[X]
=BX +C,

alX +v(0)] - fot VIX+y(7)]dr = aX - (BX+C)t
- (", ", (49)
where (, ) is the inner product on H. We can now de-

duce that f{¥]= exp{- 7 [§ V[X +$(7)]dT}[X + (0)]

€ #(H), when ¢(X) = [ exp(i aX) dv(a), v being of bounded
absolute variation. To see this, define the ¢omplex
measure U on A by

V(A) = expl - #(BX + C)/] {a exp(i aX) dv(a), (50)

for each Borel 4 CR!.
by
me(A) =vl{ af v* € A, (51)

for each Borel AT H. We shall show that f is the
Fourier transform of the measure u, ¢ M(H).

Consider the measure Ly defined

Let ¢[ | be any real bounded continuous functional

g:H~R. Define g(-) the real bounded continuous func-
tion g, :R*~R! by
ala) =glr]. (52)

Then, according to the definition of u,, we obtain

=R m o om o+ 1 mEE 3 +1
Sl ) Sl

}1”(“’7;1 1fm om+1
e "(ﬁ 2"} zﬂ .

(53)
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Hence, for all such real bounded continuous functionals
&

[elv'lduy(v) = [g,(2) dv(a). (54)
We can then deduce that vyc H

[ expl=i(v', W) duy (¥) = [ expl-i(+*, »]av(a)

= [ explilaX - (BX +C)
- (", Nav(a). (55)
From Eq. (49), we obtain¥yec H
[ expl-i(¥', N]dug(v) = A7), (56)

as asserted.

It is not difficult to show that uy € M(H) follows from
the fact that v is of bounded absolute variation and so
fe F(H). Theorem 4 then gives

Flexpl~i [ VX +v(D)]drto[X +1(0)]]

= [ expl- G/2)(v', ¥)]duy (v

= [ dv(a) expli[ (X - at/2)(a - Bl) -~ B*#/6 - Ct]}, (57)

where in the last step we are using Eq. (54).

A simple Fourier transform shows that
[ expli a®)G(X, &, 1) d&

=expli[(X - at/2)(a~ Bt) = B*#*/6 - Ct], (58)
where G(X, &, ¢) = (2mi1)™ /2 exp{— i[(Bt/2)(X + £)? + B%/24
+Ct]! is the Green’s function of the original
Schridinger equation. !* Taking Fourier transforms as
in the last part of the proof of Theorem 5, we finally
obtain

Flexpl- ifot VX +v(D)]d7te[X + 1(0)]]
= [G(X, & Y&, 0)dE= (X, 1), (59)

proving the corollary.

In the last corollary the potential V =(BX +C) is cer-
tainly not bounded, but we have seen that the precise
relationship given in Eq. (4) between classical mechan-
ics and quantum mechanics is still valid for this poten-
tial. This raises the question as to the types of potential
for which Eq. (4) is true. In the next section we show
that the result (4) also holds for the harmonic oscillator
potentials V=AX?+BX+C, A>0.

3. HARMONIC OSCILLATOR POTENTIALS

We consider the harmonic oscillator corresponding
to the potential V=AX%?+ BX +C, A >0. This potential
V is unbounded and V is, therefore, not the Fourier
transform of a measure of bounded absolute variation.
We must now see whether the relationship (4) is valid
for potentials V of this kind.
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The first step in dealing with potentials V of this kind
is to prove that if G(X, £, 1) is the Green’s function of
the corresponding Schridinger equation with initial con-
dition ¥(X, 0) = 6(X - &), then G(X, o, t) =lim,_,, [ exp(ia&
- €€2A)G(X, £, 1) d¢ is given by

G(X, &, 0) =F [exp{- [' V[X + ¥(m)]ar}
xexplialX + Y(O)J}]. (60)
We have already seen that this identity is true if V is
of the above type with A =0. Equation (60) is also valid
when V is the Fourier transform of a measure of bound-
ed absolute variation. This follows {rom the results of
the last section by considering the Cauchy problem with
initial data (&, 0) = ¢ (&) = exp(i @& — €£%) = L3RY), €>0.
Clearly ¢.(£) is also the Fourier transform of a mea-
sure of bounded absolute variation, €> 0. Therefore,
if GlX, o, 1) = [exp(iat- e)G(X, £ t)dE, €>0, we have
GelX, o, ) =7 [exp(~ 7 ' VIX +v(m)]dr}e.[x + 1O)]].
(61)
|

In the Appendix we give a simple argument to show that
el X +¥(0)] = ol X + ¥(0) I~ O+, as €~0+. For poten-
tials V which are the Fourier transforms of measures
of bounded absolute variation, Eq. (60) now follows from
Eq. (27) and Theorem 4.

We now prove the validity of Eq. (60) for the harmonic
oscillator potentials V=AX%?+BX +C, A>0. We then
go on to prove that for potentials V of this kind, the
solution of the corresponding Schrddinger equation with
Cauchy data (X, 0) = ¢(X) = [ exp(i aX) dv(a), v again
being a2 measure of bounded absolute variation onR?,
is given by

9(X, 0 =Flexp{~1 [ VIX + v(n]atto[X + v(O]).  (62)

This is the result in Theorem 5. Before proving Theo-
rem 5, however, we require a number of elementary
technical lemmas— Lemmas 2, 3, 4.

Lenima 2: Let D" wt/n) be the (n~ 1}X(n~1) determinant

2-2u%A%/3 - 1-wPAl/B 0 0 e 0 0
- 1-u?ar?/6 2~ 212088 /3 ~1-~u?ar?/6 0 e 0 0
D awt /m) = 0 —1-u?a/6 2-2P0/3 -1 wPARR/E ... 0 0
............................................................................ ,  (63)
0 0 0 0 s = 1-uwPA?/6 2 2uPAt%/3
where Al =7/n. Then, for sufficiently large n,
D™ Yt /n) = n(sinwt) /wt + (wt/6) sinwt + On™t), (64)
the constant in the term O(n!) being dependent on wt.
Proof: Expanding D"(wt/n), the corresponding (v Xv) determinant (z > v), by the elements of the first row,
D —al’t +b2D"?=0, v=3,4,5,..., D'=a, D*=a*-0? (65)
where a=2 - 2u?At?/3 and b = -1 - w?At%/6. Let u, and «_ =u* be the roots of the quadratic equation
12~ au+ b =0, (66)
Then, since (a®- 4b®)#0, D" =Au,+Bu", v=1,2,..., where Au, +Bu_=a, Au®+ Bu®=a®- 02,
It follows that
uy=ax(a® - 40N 2/2 =1 - WA /3 +iwat(l - war? /12 2, A=B* = (- au_+a* - b®) /u,(u, - u.). (67)
Then, for sufficiently large »,
Uy =1+ iwAf — wPAt2/3F i(wWPAr?) /24 + O(AH) = (1 £ iwAl — P o2 /3F it AL /24)[1 + O(Ath) ]. (68)

Denoting the principal branch of the logarithm by In, we have in the cut complex z plane, the cut being (- =, - 1),

In(l+2)=z—~2%/2+23/3-24/4+--+, |z]<1, (69
where the above series is absolutely convergent in the disc, |z|<1. It follows that, for sufficiently large 7,

n1n(w,) =nlt 1wt + wiArk/6 Fiuwt At /24) + 0(n™%) = £ iwt + w??/6n 7 i /24n* + O(n3) (70)
and

u? = explx iwH)[1 + w?2/6n + 1/ Wit /12 % iw’t® /24) ] + O (%), (71)
Also, from above, for sufficiently large n, we obtain

A=B*=(1+iwat + Y wPar?) /2iwat + O(ar?). (72)
Writing D™ (wt/n) = (A/u)u’ + (B/u_u", the required result follows from Eqs. {68), (71), and (72).
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Lemwma 3: Let M denote the (nXn) matrix

1-2a2/3 —1-uw?af?/6 0 0 ... 0 0
~1-uwlar?/6 2-2uA%/3  —1-uwlatd/6 0 cee 0 0
M= 0 - 1-w?A%/6 2-2uPAf?/3 -1-uAt?/e ... 0 0 , (73)
0 0 0 0 cor —1-uPAt?/6 2 - 2uP0F%/3

where At =¢/n. Let M;; denote the (7, j)th entry of the matrix inverse M. Then
Mi} =n(tanwt) /wt + 0(1), Mit=M;} =1/coswt +0(n™?) (74)
and

ML =1+ (wt/n) tanwt + 03, wt+mn/2, m=0,1,2,.--. (75)
Proof: First of all we prove detM = coswt + O(n™), for sufficiently large n. From the previous lemma

D™ — 2R. P. [(exp(iwt)/2iwst)(1 + wPAr?)(1 + u?tAt) /6] + O(AL),

D2 =2R. P. [(expliwt)/2iwdt) (1 + w2t [(1 + w?tat) /6](1 ~ iwal) |+ O(at). (76)

Splitting up the third bracket in D"2, gives

D™2=p"! _R. P. [exp(iwt)(1 + u?at®) (1 + w?tat/6) ]+ O(At) = D™ — coswt + O(At). (1)
Expanding detM by the first row, we obtain

detM = D" - D*% + O(at) = coswt +O(n™). (78)
We then have

M} = D™ /detM = (ntanwt)/wt + 0(1), M5t =M1 = (- 1) (- 1 - w?ar?/6)"! /detM = 1/coswt + O(n), (79)
wt#{(m+3)m, m=0,1,2,---. Further, from the above expression for the matrix M, we obtain

M2 =[(1 - w?Ar2/3)D™2 — (1 + w?at?/6)2D™ 2 | /[(1 - wPat?/3)D™ - (1 + a2 /6)2D™ 2], (80)
Substituting for D™ in terms of D™? and D™? from the recurrence relation for D", we obtain

M =[1-w?ar?/3 - (1+w?at?/6)2D™3/D™2]/[2 (1 - w?af?/3)% - (1 + w?At?/6)? — (1 - wPat?/8)2D™3 /D™2). (81)
Arguing as in Eqgs. (76) and (77), we easily deduce

D™3 = D" 2 . cosuwt + a(wt)wat + O(At?), (82)

where « is a finite real-valued function, whose detailed structure is unimportant. From the previous lemma, we
obtain, for a finite real-valued 8,

D" /D% =1 — waf cotwt + wAL2B(wt) + O(AL3), wi+tmm, m=1,2," . (83)
Substitution of this expression into Eq. (81) leads to the desired result for M;}.
Lemma 4: Let fo(v] = exp{-7 [ (w?/2)[X + #(7) P d7} exp{i o[X + ¥(0)}. Then, for wt#mn/2, m=1,2,---,
Flryl=1m 7 [f, °P,) = (coswt)™ /2 expf - (i/2)[(a?/w + wX?) tanwt ~ 20X secuwt]}. (84)

n- oo

Proof: First of all we have

14 (i+l)t/n ]t n 2 A rl_-\l ¢
f (X +Py(T)Ed Z) [X+ 7+ ( -~) (Y5 - vj)t—] ar =323 YR+ 7VVia +72) -, (85)
0 it/n n i=0 n
where ¥j=X+7; and ¥, = 7(7t/n j=0,1,2,...,n, ¥being normalized so that ¥({) =0. Therefore, we arrive at
32 ;o2 =l (4,22 4ot ’2
FilfuPul=N, [exp M—M—E (2 + v T vG) +iayy)d™, (86)
21 =0 at i=0 3
where At =7¢/n. Putting vj=7;,(a)'/2, j=0,1,2,..., n~1, gives
Falfao P l=N (A1) /2 exp(— iu?Atx?/6 +ix?/241) [ expl(i/2)¥" My]exp(iy c) d', (87)

where M is defined as in the previous lemma, " =(¥,, ..., ¥.,) and
™ =(a(at)’2,0,0,..., - x/(A1) /2 _ wi(at)3/2x /6).
For a real (nX#n) nonsingular symmetric matrix M and a real (zX1) column vector c,
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[ expl(i/2) ¥ My exp(i7v7 ) @y = (2m)" *(detM) ™ /2 exp[~ (i/2) (T M )], (88)
where on the rhs we choose the branch of the square root to be positive on the positive reals.

Thus, we arrive at

Folfo o Pol=(detM)™ /2 exp(~ iw?tx?/6 +ix2/28) expl(-i/2) (c2Mi} + 2¢,0,Mp2 + c2M:L) 1. (89)
Using the previous lemma, for fixed values of X and f, we obtain

Falfa o Pu]=(coswt)™ 2 exp{~ (/2)[(a?/w + wX?) tanwt - 2 aX secw!} explOn™?) + O(cPn) + O(an™)] (90)
wt+mm/2, m=1,2,--+. This proves the lemma and Eq. (80) for the potential V= u?X?/2.

We now prove the main result of this section—Theorem 5.
Theovem 5: The solution of the Schrédinger equation

o 192
5 =g ae VX 1)

with Cauchy data (X, 0) = &(X) = fexp(i aX) dv(a), v being 2 measure of bounded absolute variation, with a real-
valued potential V[X]=AX?*+BX+C, A>0, is
WX, 1) =Fexp{~i f VIX +v(1))artelx + v(0)]], (92)
AN 2t+mn/2, m=1,2, -

Proof: We write V[X]=AX?+ BX + C=A(X+B/2A)% + (C = B*/44) = w?x'2/2 + w,, where X' =X +B/24, w=(2A1'%,
and w,=(C - B?/4A). Then, putting 3'(X’, #) = exp(iwy)¥(X, ), reduces the Schridinger equation to

all) 1 azzp ZHZX'ZZI)’

PR T TN T2 (93)
With Cauchy data ¢'(X’, 0) = ¢ '(X") = (X, 0) = ¢(X). We shall show that, for wi#mm/2, m=1,2,-+-,
WX, 1) =Flexp{- i [ w¥/2X +¥(D]Pdrre [X" + ¥(0)]], (94)

for ¢'(X') = ¢(X) = [ exp(i aX) dv(@), v being of bounded absolute variation onR*. It will then follow that
X, 1) = exp(- iw ' (X', 1) =F[exp{ - i fo' VIX +¥(1)]dr}elX + v(0)]), (95)
¢(X) = [ exp(i aX) dv(a). In establishing the validity of equation (94) we drop all primes.
Define the functional f,[7] by f,[¥]=exp{- i [¢(w?/2)[X + ¥ () [2d7} exp{i a[X + ¥(0)]}. We must prove first that

[ FalfseoPJav(e) =7, [ (oo P av(@)] =3[ [ fu dv(a)°P,]. (96)

The rhs of the above identity is obvious. The equality on lhs is established in the Appendix by completing the square
in the exponential.

From the previous lemma, for each real @, 7/, °P.]~F{fa]las n~, wt+mn/2, m=1,2,--+, and
[1Falsa ool [dv(@) | < (et /2 [ |dv(a) | < . (97)
The dominated convergence theorem then implies, for wf#mu/2, m=1,2,-+-, [Flf,P,Jdv(a)— [F[f,]dv(e) as
oo,

Hence, letting n -« in Eq. (96), we obtain wt#mn/2, m=1,2, ",

[ Ffu)avi@) =71 f, dv(@)]. (98)

The last equation is equivalent to
(coswt)™ 2 [ expl{~ (/2)[(@%/w + wX?)tanwt - 2aX secwt [} dv(a) =7 [exp{ - i fot(wa//Z)[X +v(NFarte(x +v0)]], (99)

where ¢ (X) = [ exp(aX) dv(a), for any measure ¥ of bounded absolute variation, wt#mn/2, m=1,2,-..
We now take the Fourier transform and write

i/2 R
-1/2 : 2 2 ot T w .
(coswt)™ 2 exp{ - (i/2)[(0?/w + wX?) tanwt — 2aX secwt]} —}alfg (——~——~2m. sinwt) /:R exp(iaé)

X expl (fw/2 sinwd) [ (X% + £?) coswt — 2X EL dE
=limfy(a), wt#zmn/2, m=1,2,"-, (100)
R =
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Therefore, wt+mn/2, m=1,2,+--,

Flexp- i [ (/21X + (D artelX + 7(0)]]= [ lim fa(0) dv(e),

(101)

where, from Lemma 1, wt#mmn/2, |fe(a)| <M, which is independent of R and . Using the fact that v is of bounded
absolute variation, the dominated convergence theorem and Fubini’s theorem give

Flexp{=i [/ (?/DIX + ¥ P arto[X + ¥(@]]=1lim [ fa(e) dv(a)

=lim f_i (w/27i sinwt)* /2 d £ exp{ (/2 sinwt)[ (X% + £2) coswt — 2X £[}

R+

x [ expliag) dv(a).

However,

(/27 sinwt)! /2 exp| G0/ 2 sinwt)[(X? + £2) coswt — 2X £} = G(X, &, 1),

(102)

(103)

where G is the well-known Green’s function for the harmonic oscillator.'® Finally then, we obtain

7 lexp{-i fot(ufz/ X + YN Parto[X + 1O = [ GUX, & DL, 0)dE=UX, 1), (24) /%t =wi#mn/2,

proving the theorem.

4. CONCLUSION

It is a simple matter to deduce from the above work
the results corresponding to the case ##1, m#1, in the
Schrédinger equation. We summarize these results in
two theorems,.

Theovem 6: Consider a particle of mass » moving in
the potential V. Let #(x, f) be the quantum mechanical
amplitude for observing the particle to be at x at time
{. Let the polygonal path (P,y +x) be defined as in the
Introduction, and let S, [P,» +x] denote the classical
action of the particle of mass » moving in the potential
V along the polygonal path (P, +x), the particle moving
with constant velocity along each of the segments of
(P,y +x), so that

3 r_?_-\l L —v)2 t
Scl[Pn.y'*‘x]:%ZJ (L‘L—YJ)_ f V[Pny*_x] dT'
i=0 0

(105)

Then, if the potential V is either (an)harmonic, V=Ax?
+Bx+C, A>0, or V is the Fourier transform of a
measure of bounded absolute variation and if ¥(x, 0)

e L3RY) is the Fourier transform of a measure of bound-
ed absolute variation, we have

$(x, 1) = imN, [ @y exp{(i/B)S 4l P,y + x (v, + X, 0),
(106)

where N, = (2mifil /nm)™"'2 is a normalization constant
and dy=dy,---dv,,, each integration being from — =
to + =,

In the case V=Ax%+ Bx + C, we must stipulate
(2A) 2t +mn/2 (A~0), m=1,2,---, and we can lift
the restriction ¥(x, 0) € L2R?1).

The analog of this result for the Green’s function has
a compelling simplicity.

Theorem T: Let G(x, &, t) be the Green’s function for
the Schrédinger equation

LY R %

5= g TV (107
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(104)

{

with initial conditions ¥(x, 0) = 6(x — £} and define

Glx, a,t) =lim,.,, [ expfat - €)G{x, £, ) dt. Then, if
the potential V is either (an)harmonic, or if V is the
Fourier transform of a measure of bounded variation,
we have

Glx, a, ) =limN, [ d"vexp{(i/m) Sa[P,y+x]

new

X expli (v, +x)], (108)
where N, is the above normalization constant and
SalP,y+x] is the above classical action.

The above two theorems establish the promised exact
relationship between classical mechanies and quantum
mechanics. One could, of course, use them and some
principle of stationary phase in = dimensions to obtain
classical mechanics from quantum mechanics in the
limit as #7~0.7 Personally we prefer to approach this
problem by the quasiclassical representation of Ref.

1. In this connection it is worth remarking that the re-
sults of the quasiclassical representation are still valid
for the new definition of 7 given here. The definition
given here is less dependent on Fourier transform and
is, therefore, easier to handle. Moreover, as we have
seen, it is simply related to the underlying mechanics.
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APPENDIX A

Consider the functional & [¥]= ¢ [X + 7(0)] = exp{- €[X
+7(0)]3, €= 0. Then we prove here that lh, - iglig—0,
as € -0+, Il Il being defined as in Eq. (27).

A Fourier transform shows that, for € >0,
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helv)=(41€)1 /2 [ exp[- i ay(0)] exp(- o?/4€ - iaX) da.
(A1)

We now define the measure v, on R by

v, (B) = (4m¢)t/2 fa s exp(- a?/de~iaX)do, (A2)

for each Borel BCR!. It is also convenient to introduce
the continuous map 7:R* - H defined by

m(a)=7*(- ) e H, (A3)

where in this instance *(-) = aG(0, -), G being the re-
producing kernel for H. Then, for € >0, we define the
measure L, on H by

e(B) =v (1 B), (A4)

for each Borel BC H, Not let g be any real-valued con-
tinuous bounded functional g: H~R*. By definition of

He

om afm om+1

mz:.mzn “e{g [zny on )}

s RN m+1)
o zﬂ Vﬁ {(ﬂ g )[ 2’l s 271

= qfm m+1
A {"*’”” ‘ [55,—27)} '
It follows that, for each real bounded continuous func-
tional g and each € >0,

[ gl ldu(v) = [(gon(a) dv (). (A5)
Hence, Vyc H, €>0,
[ expl—i(v', Vldp )

= [ expl- i(+*, V] av (@)

=(41€)t/2 [ exp[- i av(0)] exp(- o?/4e—iaX)da. (A6)
Therefore, we obtain ¥7e H, €>0,

| expl-i(v', Mdu (v =h[vle 7). (A7

Also, from the above definition of 1, we see that, for
each Borel BC H and each € >0,

| e(B) | =|ve(r'B)|< (4101 /2 [ _ 4 exp(- o?/4€) da.

(A8)
The last inequality implies that, for each Borel BCH,

L (B) = uy(B), as € ~0+, where for Borel BCH
if 0 B,
’ A
#o(B) {0 otherwise, (a9)
and o[v]=1=[exp{-i(v', N}duly) e FH).

It remains to prove that Wy, -yt ~0, as €~0+. We
define the measure v, onR* by

vy(B) :{(1), if 0 B,

otherwise,
for each Borel BCR?,
inequality (A8) gives

(A10)

Then a simple argument using
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Nie = woll = [ due ~duy| = [ |dve-dvg|~0,  (a11)
as € ~ 0+, proving the result.
APPENDIX B

Here we show that the two integrals I and J, defined
below, exist and are equal, for sufficiently large =,
when wt#mn/2, m=1,2,---:

I= [FfyoP,ldv(a), A [(FuoP)av(a)],  (BY)

where f, is the functional
Fulv]=exp|- zf (w?/2)[X + v(7) P dT}
x explialX +(0) ], (B2)

and v is a measure of bounded absolute variation on R®.

We consider the integral / first. From Lemma 4, we
easily obtain

1= (detM)™ /2 exp{~ (i/2)[w?atx?/3 = x2/ Bt + M (x/ a2
+ A 2x /6)2 ]} f exp{— (i/2)[ a®AtMy]
- 20(X + w?at?x /6) ML dv(a (B3)

where M is defined as in Lemma 3 and, for sufficiently
large n, wt#m7/2, m=1,2,--+, detM#0.

Define k(vy) by h(v,) = | expli aat!/?yy) dv(a).
easily obtain that the integral J is given by

Then we

J =N, (80" % exp[- (i/2)(wPatx?/3 ~ %/ ab)]

x [ expl(i/2)7" My} exp(iv” Dh(v)d"y, (B4)

where again M is defined as in Lemma 3, ¥ =(¥y ...,
')/,,_1), and

A" =(0,0,...,0,—x/Ar 2~ y?ar/2x/6),

We now complete the square in the exponential in
the variables ¥,., Ya_2 - - -, ¥p, taken in that order, to
obtain in order new “square variables” zy, 25, ..., 2,.
Then we can see 3 a real diagonal matrix A with entries

M, Ag ..., A, and a real upper left triangular matrix U
with entries 1 down the secondary diagonal such that
Uy Ut U 1
U Uy U+ 1 0 )
1 0 0 O 0
0 0 0 1
-1
e 0 0 - 1 Usn ,
1
“Unpa Um ™
N 0---00
0 2---0 0
A=) ocvoeervene . (BS)
00 ---0 A
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The matrices U and A are the matrices used to define

the new “square variables” z given by 2" =(zy, ..., 2,)
and z =Uv so that
Y'My=2TAz, WveR" (B6)
M =UTAU. (BN

We shall also require the column vector e =AY UT)d,
A simple piece of algebra then yields

J =N, (602 expl(- i/2) (wPotx?/3 - x2/A8)]
X f exp[(:/2)(z + e)TA(z + e) |n(z,) Iz

xexpl(~i/2)d" M al. (B8)

The matrices U, A and e are complicated algebraic
expressions in the entries of M. The properties we re-
quire are, however, easily deduced from the above.

First of all from above

detM = (detU)? detA = (- )"V detA = N2, - -

detM=20=>X;#0, j=1,2,...,n. (B9)
Secondly,

X!=Mii and XlU;L=Mi, (B10)
For we have M~ = A 2(UF)™ and so

M= 2 UjsipUn =[UnFx) =27,

iy k—l
n
My = ElU;}A;iU =N (B11)
J k=
where we are using Uil =0;, and Aj = X;'5;,
Thirdly,

e, :M" {B12)
This follows because e, ={A M (UT) g =37 pa Ars Uss diy
=X td =M d, where we are using the fact that
dkl '—dn 6Izn'

Combining these results, we arrive at
J = (detM)1 /2 expl~ (i/2)[uParx®/3 — x%/ At
+ Moo/ a2+ w?art 20 /8)2 ]
x(2mi/ 02 [ “h(z,) expli/2Mii(z, + Misd,)% dz, (B13)

Comparing Eqs. (B3) and (B13), we see that proving
the equality of / and J is equivalent to proving

[ 1) exp{(G/2M3})[u = ML (x/ A8 72 + w?at3 /2 /6) P du

= (2miMi}) 2 [ dv(a) exp{- (
- 20(X + wPAtPx /6) MY,

(i/2) 2armit
(B14)

However, we have from Fubini’s theorem

lhs =1lim f_: du expl (i /2M})[u~ ML (x/ 8812 + wP ot /2 /6) 12
R-we

X{ [ exp(iaat 2) dv(a)} =lim [ dv(@)fp(a),

R=ow

(B15)
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where
fa(@ = [ 5 exp{(i/2Mi})[u - Mit(x/at 2 4 wPard /% /6) P

+ianf 2y} du,

From Lemma 1, |fz(a)! <M, where M is independent
of @ and R. Hence, the dominated convergence theorem
implies

lhs:f dv(a) limfr (@)
R=
—fdu

— 20(X + wPArx /6)ML)} = rhs.

o) (2miMP) /2 exp{ - (i /2)(a2atMi}

(B16)
This proves that 7 =4J.
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Fourier transform of a measure of bounded absolute
variation.
SFor an account of the test space 0 (0,?) see, for instance,
W. Rudin, Functional Analysis (Tata McGraw-Hill, New
Delhi, 1974).

10F, C., Titchmarsh, The Theory of Functions (Oxford U.P.
London 1952), p. 419.

115ee Ref, 6 above for the closed graph theorem.

12gee Ref. 6 (¢} above,

13gee Ref. 6 (c) above and K. It8, in Proceedings of the Fifth
Bevrkeley Symposium on Mathematical Statistics and Proba-
bility (University of California Press, Berkeley, 1967),

Vol. II, Part I, p. 145.

D, ter Haar, Selected Problems in Quantum Mechanics
(infosearch, London, 1964), p. 142,

5See Ref. 13 above, p. 148.

165, T. Lewis and D, E, Evans, lecture notes, Dublin Insitute of
Advanced Study.

YNote added in proof : This is done rigorously by S, Albeverio
and R. Hdegh-Krohn in “Oscillatory Integrals and the Method
of Stationary Phase in infinitely many dimensions with Appli-
cations to the Classical Limit of Quantum Mechanics,” Uni-
versity of Oslo preprint, Sept. 1975-to appear in Inventiones
Mathematuae, Also see A. Truman, “Classical Mechanics,
the Diffusion (heat) Equation and Schrddinger’s Equation” (to
appear),
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Maxwell’s equations in axiomatic quantum field theory. I.

Field tensor and potentials
P. J. M. Bongaarts

Instituut Lorentz, University of Leiden, Leiden, the Netherlands

(Received 13 September 1976)

An approach to the investigation of the Maxwell field in the framework of axiomatic quantum field

theory is presented which employs Borchers’ algebraic reformulation of Wightman theory in a modified
form adapted to the special features of the electromagnetic field. This makes it possible to clarify the
relation between tensor and potential field operators, the meaning and properties of different gauges, the
sense in which field equations hold and the properties of state spaces with their special subspaces.

1. INTRODUCTION

In most of the standard texts on axiomatic field theory
the Maxwell field is excluded right from the beginning.
See, e.g., Ref. 1=3. This is because the Maxwell
field in classical as well as in quantum theory exhibits
complications not present in simpler cases like the
Klein—Gordon and Dirac fields. In the first place there
is a description in two types of variables, the field
tensor F,, or the more convenient potential A,, which
is, however, nonunique and admits gauge transforma -
tions. There are, furthermore, difficulties in the
Lagrangian formulation and, associated with this,
irregularities in the canonical quantization procedure.
There is also the somewhat singular case of a zero
mass representation of the Poincare group. Last but
not least there is the occurrence of an indefinite inner
product in Lorentz covariant descriptions such as the
Gupta—Bleuler formalism. In view of all this and of the
fact that the general problems of quantum field theory
are already severe enough, it is not surprising that
rigorous investigations have tended to stay away from
the special problems of the quantized Maxwell field. It
is, nevertheless, possible to handle part of these prob-
lems in the framework of axiomatic field theory in-
dependently from the other more general problems of
quantum field theory, It is to these problems that this
and subsequent papers are devoted. Certain aspects of
the mathematical theory of the quantized Maxwell field
have been treated in earlier work, See, e.g., Refs., 4—
6. (For an interesting recent approach in terms of Weyl
systems, see Ref, 7.) Up till now however, the only
systematic and detailed discussion of the Maxwell field
in axiomatic field theory is the one given by Strocchi
and Wightman.® (See also Rideau® for further develop-
ments.) The essential feature of their approach is the
use of state spaces with two inner products, such as
occur in the original Gupta—Bleuler formalism. One
inner product is Lorentz covariant but in general not
positive definite. The second inner product is positive
definite but not necessarily invariant. (Situations like
the Coulomb gauge appear as special cases in which the
two inner products coincide.) The reason for the intro-
duction of the second inner product seems to be the
desire to keep the situation within the range of standard
Hilbert space theory. A close inspection of some of the
mathematical details not worked out by Strocchi and
Wightman shows however that this advantage is largely
illusory. The fields and other objects have rather
awkward properties with respect to the Hilbert space
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topology. Typical of this is the fact that for the free
field the operators representing the Lorentz group are
not only nonunitary but even unbounded.

In this paper a different line of approach will be
followed, based on an algebraic reformulation of
Wightman theory developed by Borchers.'® According
to Wightman’s reconstruction theorem any specific
field theory is completely characterized by the vacuum
expectation values of its products of field operators.

In the formulation of Borchers this means that such a
theory is described by a linear functional on a tensor
algebra of test functions. This functional determines
uniquely, through the GNS construction, all the mathe-
matical properties of the corresponding space of state
vectors and of the field operators acting in this space;
in particular it provides convenient topologies in a
natural manner. These features are fully retained in

a slightly generalized version of the Wightman—
Borchers formalism that will be employed in this
paper. By relaxing the usual positivity requirement on
the state functionals one obtains a mathematically
satisfactory way of dealing with the occurrence of state
spaces with indefinite metric. Furthermore, there will
be two basic test-function algebras, one for the field
tensor and a second one for the potential, related to
each other by a natural homomorphism. In this frame-
work a unified description of the quantized electromag-
netic field can be given, in which it becomes clear what
a choice of gauge means, why different gauges appear,
what the relations between tensor field and potential
field operators are, in what sense field equations are
valid, and what the properties are of the representation
spaces of state vectors, with their special subspaces.
All the results and most of the assumptions of Strocchi
and Wightman can be derived in full mathematical
rigor, simply from the basic properties of Maxwell’s
equations. An amusing consequence will be that the
classical Maxwell field is contained in the general
formalism and appears as a rather special and some-
what trivial example.

In Sec. 2 a short review will be given of that part of
the Borchers formalism that is needed for the purpose
of this paper. In Sec. 3, the main part of the paper, a
Borchers formalism for the electromagnetic field will
be developed, consisting of separate tensor algebras
for the A, (x) and F, (x) fields, connected by a natural
homomorphism, Properties of the corresponding field
theories, as representations of these algebras, will be
derived. Section 4 will contain various final remarks.
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Subsequent papers wili deal with the free field as a
specific example and with the problem of gauge
transformations.

2. BORCHERS’' FORMULATION OF AXIOMATIC
FIELD THEORY

In 1962 Borchers gave an algebraic formulation of
axiomatic field theory. ™ It was further developed in
Refs. 11 and 12, See also Refs. 13—15, For a single
real scalar field it contains the following concepts:

a. A field algebra: It may be called the Borchers
algebra, will be denoted as 4 and is defined as the
tensor algebra over the space §(R,) of complex valued
Schwartz test functions, It is the topological direct sum
T o®S(R,); i.e., an element of 4 is a finite sequence
fos fise ey for With fo€C, f€ S(Ry), j=1,...,k. An
involution is defined by f,(xy,...,x,)* =f(x,,...,%). In
this way A becomes a topological x-algebra.

4. States: These are the positive and normalized
elements w from the dual 4’;i.e., w(a*a)=0, Vac A4,
w(e)=1 (e the unit element in 4). Because /4’ is the
topological product of the spaces §'(R,,), a state w is
given by an infinite sequence of tempered distributions
in 4n variables, with n=0,1,2, -+,

c. Transformations: These are described by bicon-
tinuous *-automorphisms i of 4. Such a i induces by
transposition an invertible bicontinuous map ¥’ from
A’ onto itself, mapping the subset of states onto itself.
Of special importance are the automorphisms i, gener-
ated by invertible bicontinuous linear transformations
T in the basic space S(R,) according to

Vpify ® o ®f = TH® QTS (f,e SR,
B=1,...,n). (1)

In this way one obtains, for instance, the action of the
Poincaré group on 4 and A’ by taking (T(a, A)f)(x)
=f(A"x - a)).

For further mathematical details, especially on the
topological properties of 4 and 4’, see Refs. 11-15,
For more general background material on topological
vector spaces, see Refs. 16—18.

A state w gives rise, by the GNS construction, to a
representation ¢ of 4, in a space 4 which becomes by
completion a Hilbert space. In # there is a cyclic
vector £ with the property

(D(f1®"'®fq):(9’ ¢(f1)"'¢(f,,)g), (2)

kaS(R4), kzl,...,n.

The operators ¢(f), fe S(R,) are the field operators,
Q is the vacuum state, The GNS construction is such
that if w is invariant under a group of automorphisms,
then this group will be represented by unitary operators
in #, leaving  invariant. In this way a Wightman field
theory is given by a state w that is Poincaré invariant
and has further properties ensuring locality and a cor-
rect energy—momentum spectrum. For the description
of fields different from a scalar field one substitutes
for the basic space §(R,) other spaces, e.g., spaces
of spinor or vector valued Schwartz test functions.

Borchers’ algebraic formulation of axiomatic field
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theory is completely equivalent to the original Hilbert
space approach of Wightman. It is somewhat more
abstract and the relation to conventional field theory is
less obvious, but it can be argued that this is more than
compensated for by a much greater transparency and
internal simplicity. It also shows more explicitly a
technical aspect of Wightman theory that is of impor-
tance for its application to the special case of the
Maxwell field. This is the fact that there are two dis-
tinct topological structures that play a role in the
theory. The first and most obvious one is the Hilbert
space topology in the representation space. It comes
from the positivity of the state functional and is im-
portant for the interpretation of the theory as a quantum
mechanical theory, Because of the continuity of the
functional there is, however, a second, much stronger
locally convex topology in the representation space. It
is directly connected with the topology of the algebra 4
which in turn comes from that of the test function space
§(R4) on which the algebraic formalism is based. It is
on this topology that most of the technical developments
of the theory depend. Not much of this is lost if one
drops positively as a general requirement for state
functionals. The essential properties of the GNS con-
struction remain the same. For a linear functional w
which is continuous and real [i.e., wle*)=wla), YacA]
the representation space #/ is the quotient space A/9,,
with ¢, ={aecAlwba)=0, wbeA}. ¢, is the closed left
ideal of degeneration of w and coincides with

{a €A wla*a) =0} when w is positive. Because A is a
nuclear space (in fact, a strict inductive limit of nuclear
Fréchét spaces) the representation space /4 is nuclear;
w(a*b) defines a (separately) continuous, nondegenerate
sesquilinear form as inner product on 4. The field
operators are continuous operators; they and other
objects like the operators representing the Poincaré
group when w is invariant have quite convenient proper-
ties with respect to the topology in 4. There is, there-
fore, no need for an extra Hilbert space topology (in a
separate publication more detailed results of this sort
will be derived for certain classes of functionals). For
these reasons it will be appropriate to allow in the
description of the quantized Maxwell field state func-
tionals that are continuous and real but not necessarily
positive or normalized. Of course, at places in the
theory where this is physically desirable, notions of
positivity will reappear.

3. A WIGHTMAN-BORCHERS FORMULATION FOR
THE MAXWELL FIELD

In classical electromagnetism the physical direct
meaningful quantities are the electric and magnetic
field strengths, These form together the antisymmetric
field tensor F,,(x) which satisfies the two Maxwell’s
equations

aqup +avFau +apFu,v:0: (3)

F,,=J,. (4)

The first equation (3) is equivalent to the existence of
a potential A ,{x) from which F,, can be obtained accord-
ing to

Fu,v:auAv—auAu_; (5)
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one may then restate the theory in terms of this auxil -
iary quantity, in particular the second equation (4),
which connects the electromagnetic field with the cur-
rent becomes

240, A, —8,2%A, =J,. (6)

The field F,, does not determine the potential A,
uniquely, but only up to gauge transformations. For the
quantized electromagnetic field a very similar line of
reasoning can be followed. Before doing this in the
rigorous form of the algebraic approach it may be help-
ful to give it first in a loose, nonrigorous version,
using the language of standard Wightman theory. It then
consists of the following steps:

a. Let there be given a Wightman theory for the
tensor field F_,(x), i.e., one has a Hilbert space /%,
a unit vector QF, and field operators F,(x), satisfying
the first Maxwell equation (3) as an operator equation.
(Further properties such as Lorentz covariance,
locality, etc., are not of importance at this point. )

b. Because of a, one has a set of vacuum expectation
values

F -
w“lvl'“”n"n(xl’ .

* Xn): ‘QF) Fullll(xl) e Funvn(xn)QF)’

n=0,1,2, -+, (n

These have a positivity property because 4 is a Hilbert
space and satisfy Eq. (3) in every variable separately.

One then proves a theorem stating that because the
©Ofyew v, Satisfy (4) in thlS sense, there exists a set
of (generahzed) functions w wy (xl, cees X))y M
=0,1,2, - -+, such that the g1ven "set wul,, .. »_Canbe
obtamed from it by repeated antisymmetric differentia-

tion in every variable; e.g.,

F . 2 132 A 1 a2
W ypugy, = a“lauzw"l"z 9 a"zwv Ho a"la”z ul"z
2
a2 el L (8)

with 3] =3/3(x,)*. The functions wj ..., (x,,...,x,) are
not uniquely determined; this amounts to gauge freedom.
It is important, furthermore, to note that they need

not have the positivity property of the w s also

they are not necessarily Poincaré covarlant if the

wffl seeu,p, ATC

d. The reconstruction theorem in a slightly general-
ized form makes it possible to obtain from the w} By,
a field theory in terms of an operator field 4,(x), such
that the w . become vacuum expectation values One
then has an inner product space A4, a unit vector 24,

and field operators 4 ,(v).

In this way, by using essentially only the first
Maxwell equation (3), one sees that a given theory for
F, (%), i.e., a triple {47, Q" , F, (x)}, gives rise to
many different but physically equivalent theories in
terms of a potential A (x), i.e., triples {/*,Q*,A (x)}.
Any such {#*,94, 4 ,(x)} will be called a gauge for the
given {#F, 07, F_(x)}. It is important to observe that
H* and /4T are by construction distinct spaces and that,
therefore, at this point F,,=3,A,—0,A, does not make
sense as an operator relation. It will be shown that
there exist for every gauge a natural map from part of
the space A#* onto A/F. It will, however, in general not
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be possible to make, by means of this map, an identifi-
cation between 4#“ and /7. This will be clear in the
rigorous formulation to the Maxwell field that will now
be given,

The field tensor description (F-description)

For a smeared field tensor operator one thinks of the
symbolic expression F()=[F, (x)y**(x)d*x. Define,
therefore, /7 as the Borchers algebra over the test
function space §‘?’ consisting of the complex, anti-
symmetric tensor valued functions $**(x), with §(R,)
components. The basic space § ‘2’ is just as in the
scalar field case a nuclear Fréchét space. The com-
pleted n-fold tensor product spaces ®* §'?* are again
nuclear Fréchét spaces, and can be identified with the
space of tensor valued functions g#1"1° " "#r(x,, ..., x,),
antisymmetric in each pair of indices ;, v, separately.
(Because of nuclearity the 7 and € tensor product topolo-
gies and their completions coincide. Sec. Ref. 16,
Theorems 43.9 and 50.9. A7 is the topological direct
sum of the n-fold tensor products and is therefore a
nuclear LF space. See Ref. 16, Theorem 50.8. Consi-
der the linear subspace §{*’ of §'*’ consisting of all ¢
that can be written as ¢*"=23_,x*"?, for some completely
antisymmetric tensor function x***(x), with S(R,) com-
ponents. Consider in each ®" ¢ the closed linear span

of the tensor products §{¥'® §*®'@...@ ¢ (2
2 SB@. . $2, ..., P8 (P&...2 2 The direct
sum of these subspaces of " §'*)) for n=1,2, ---, is

a closed subspace in A7, It is in fact the closed 2-sided
*-ideal generated by §¢’ in AF. It will be denoted as
G(52), Let M=(9(S5P)NY, the annihilator of ¢(Ss*’) in
(4F)’, i.e., the linear subspace of (4F)’ defined as

M={we (4 1) =0, Vae ¢(5:*)]. (9)

A field theory for the tensor field is then described by
a positive, normalized functional w” in /. [Note that
wf €M is the rigorous form of the statement that the
n-point functions satisfy (3) in every variable separate-
ly. | By the GNS construction this corresponds to a
nuclear space 4F (which is at the same time a pre-
Hilbert space), a cyclic unit vector 2, and field
operators F(y) that satisfy F()=0, Ve §*'. [This is,
of course, the rigorous form of (3), as an operator
equation, smeared with test functions. | Further re-
quirements like Poincaré invariance of w’ can be added
in the usual manner.

The potential description {A-description)

For a smeared potential operator one thinks of the
symbolic expression A(f)=[A, (x)f*(x)d*x. Define
therefore 44 as the Borchers algebra over the space
% consisting of all complex vector valued functions
(x) with S(R,) components. Again A4* is the topological
direct sum of completed n-fold tensor products &n @
and as such a nuclear LF space. Let §3*' be the linear
subspace of §®’, consisting of all f that can be written
as f*=2,¢*", for some Y §’, and denote the closed
subalgebra of 44 generated by §’ by 44. (For reasons
that will be clear further on it is appropriate to call this
subalgebra the physical part of 4%.) A field theory in
terms of potentials is now described by a real functional
w? from (44)’. The functional w* need not to be positive
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and Poincare covariance of the theory would not require
it to be invariant. It will be shown that weaker condi-
tions involving the subalgebra A4, characterize the
functionals w* that describe physically acceptable theo-
ries. By the GNS construction a functional w* corre-
sponds to a nuclear space /4, provided with a
(separately) continuous, nondegenerate but not neces-
sarily positive definite inner product, a cyclic vector
Q4, and field operators A(f).

The relation between F- and A-description

There is a natural algebraic relation between the two
Borchers algebras 47 and 4* and their duals. This is
based on the linear map d from §*’ into §®’ defined by

d "’ - 20,9" (10)
[in the language of differential forms over R,, with
S(R,) components, the §'* are the spaces of k forms,
written in dual representation; e.g., p**=(21)"e*"*y,
fr=@1)tero 5 . The §3*’ are the subspaces of exact
forms; d is exterior differentiation, and the next
theorem corresponds to Poincaré’s lemma in this
special context]|.

Theovem 1: The linear map d : §*>— §® defined by
(d¥)* =23,0*" is continuous. The kernel of d is §?'; its
image §3*’ consists of all f with 2, f* =0.

Proof: Differentiation is a continuous operation in
S(R,) so that continuity of d is obvious. The nontrivial
part of the statement about Kerd is Kerd C §{*’. In terms
of Fourier transforms and of components with lower
indices, introduced by ¢,,=(2!) €, ,.0*°, X,
== (31)7%,,,,X""°, the statement to be proved is: For a
function y,,(k) such that &, 4,,(k) +k,y,, (k) +&,9,,(k) =0,
there exists a x, (k) such that &, x,(k) =k, x, (&) =, (k)
[all functions have components in §(R,)]. For this the
following division property is useful: Let F(u,,...,u,)
be in §(R,) with F(0,uy,...,u,)=0,Vu,,...,u,€R,_,.
Then u;*F(u,,...,u,) is again a function in §(R,). This
can be verified, after Fourier transformation, as an
integration property: For an §(R.) function Flty,...,t)
for which [22 F(¢,,...,t,)dt, =0, t,...,t,€R_,, the
function G(¢,,...,t,) = [ 1F(t,t5,...,t,)dt is again in
S(R,). Suppose now k,4,, +k,, +kp,,=0, Vi
= (kq, 1, 22, k3) € Ry, For ky=0 one has &y, =k, iy;,
J,1=1,2,3. Then ,,(0,k,, k,, k5) can be divided, as
functions in §(R;) by k,, and give a single function in
S(Ry); hlky, by, fog) =k o0, by, kay By), j=1,2,3. Choose
a function x,(k) in §(R,) such that x,(0, &, , k,, k3)
= =h(k,, ky, k3) and define functions x,(k) =kg'(k;x,(k)
+o;(k)), j=1,2,3, These are also in §{R,) and one
verifies that k,x, —k,X, =¥,,. This proves the first
statement. For the last part of the theorem one has to
prove, again after Fourier transformation and using
fuve=—€,000/°, the following statement: For a £, (k)
such that &, f,,, =R, fogu TR, fouw —Rofuu, =0 there exists
a Y,,(k) such that f, ,, =k, 9,, +k,,, +k,0,,. [All func-
tions in §(R,). | For such a f,,, one has &, fo3 =% for2,
V ky, k€ R, and k,=Fk, =0, Because of the division
property the function u(k,, k;) = k3'£,1,(0, 0, &,, &,)
=13 f013(0, 0, 5, k) is well defined and in §(R,). Choose
Dor(k) in S(R,) such that (0,0, &y, ks) =ulk,, k) and
take o= — ;. The function k,¥y,(0, &y, k,, k5)

1513 J. Math. Phys., Vol. 18, No. 7, July 1977

— £112(0, &y, by, kg) can be divided by &y; up(ky, ks, kg)

=k (UPH(0, By, by, a) = fo12(0, Ry, oy 5)) iS 2 well-
defined function in §(R,) and so is uglk,, by, 23)

=k (ks¥o1 (0, 215 kay B3) = fins(0, By ko, R3)). Choose for
7=2,3 functions g, in §(R,) such that ¥,,(0,%,,k,,k;)
=u,(ky, Ry, k3) and define ;o= —~4,;. One verifies that
ko; — Ry, +fo;:=0, for by =0, v &, k;, k€ Ry and j,1
=1,2,3. [In particular, for k,=0, kyly; — Rl

= kzkil(kad’m ‘foxs) - kakil(kzwox —fmz) = kil(— ks fors +k3f012)
= = fy,23). | This allows the definition of §(R,) functions
byiy 351=1,2,3 as ¥, =k5'(k;0y, = k¥, +fo;,). Finally
one verifies that the ,, satisfy the relation f,,,=k,,,
R, TR, QED

Corollary: The subspaces §/’ of §? are closed, for
j= 2: 3.

Theorem 2: The linear map d defines by extension of
DY@ By, -dP,®dy,® -+ - ®dy, a continuous
(algebraic) «-homomorphism ©, of 4 into 44, with
Ker6,=9(5:?) and ImO,= A4.

Proof: The spaces §'? and §*®’ are Fréchét spaces,
the continuous linear map d has as its image the closed
subspace §!%’; therefore, d is a homomorphism, in the
sense of linear maps between topological vector spaces.
See Ref, 16, Chap. 17, The space §*’ and §®’ are also
nuclear; the 7 and € topologies on the n-fold tensor
products coincide and give rise to the same completed
tensor product. See Ref, 18, Theorem 50.1. One then
combines Theorem 43.9 of Ref. 16 and the corollary of
Theorem 43.7 of Ref. 15, uses the associativity of
tensor products to extend all results from 2 factors to
n factors, and obtains that the linear map ®"d from
®"§?) into ®" §'®, determined by ¥, 8 §, &+ - @y,
~dip, ®dp,® «+ - ®dy,, can be uniquely extended to a
map ®"d from 8" § ® into ®" §', It is continuous and,
moreover, a homomorphism in the sense of topological
vector spaces. Its image is 8" §*’, considered as
closed subspace of & §'3’, The kernel of &"d is the
linear span of the closed subspaces of & (‘) (&% §2))
® §P@@M* 1§ £=0,1,2,,...,n~1, See Ref. 16,
exercise 43.2. The algebras 47 and 4* are the topo-
logical direct sums of the & §®> and &" ¢‘3’, Using the
properties of such direct sums and of countably strict
inductive limits in general (see Ref. 16, Chaps. 13 and
50 and Ref, 18, Chap. V), one obtains that ©,=3~
& (®"d) is a continuous linear map from 4% into 4* with
Ker6,=75°,®Ker(®"d) = 9(5,*") and ImO, =57,

B Im(®"d) = A4. One easily verifies, moreover, that
O, is a x-homomorphism in the sense of maps of *-~

algebras. QED

Theovem 3: The transpose 9, is a linear map from
(A*)" into (AF)’, continuous with respect to weak and
strong topologies and with Ker®;=(44)" and ImO =/ .

Proof: The continuity of ©; is a well-known property
of transposed maps. See, e.g., Ref. 16, corollary of
Theorem 19.5. One has Ker6,;=(Im©,)* and Im8,= A,
(Theorem 2), so Ker©,=(4%)* To prove that Im©,
=/, it is sufficient to show that for the transposed
maps (&"d)": (®" §)' — (& §?")’, n=0,1,2,..., one
has Im(&"d)’ = (Ker " d)* [as subspaces of (&" §®’)’|.
The map &"d is a homomorphism of topological vector
spaces of the Fréchét space " §®’ into the Fréchét
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space & §', with as image the closed subspace & §/3,
{Proof of Theorem 2.) It can therefore be written as
composition of the canonical map from & {®’ onto the
quotient space & §®'/Ker®"d and an isomorphism (of
topological vector spaces) of ®" §?'/Ker®"d onto
®" 39, The transposed map associated with this
isomorphism is a bijective linear map from (&" §8
onto (&" §*'/Ker®"d)’. Composing this map with the
canonical map from (®" §'*?)'/(Im&®"d)* onto (Im&"d)’
=(®" §$)’, and with the canonical map from (& §*’/
Ker®'d)’ onto (Ker®"d)*, one obtains a linear bijection
from (®" $9°)’/(Im®"4)* onto (Ker®" d)*. This in turn
gives a linear map from (& $*')’ into (®" §®')’ with
(Im&nd)* as kernel and (Ker®"d)* as image, which can
be identified with the map (5" d)’. QED
The map 0O} is, of course, nothing but the repeated
antisymmetric differentiation of #n-point functions
Wil o {x1,...,x,), employed under point ¢ in the
begmmng of thls sect1on but now properly formulated.
Theorem 3 is the basic theorem for the present formal-
ism. It says roughly that every set of n-point functions
in the A -description goes by antisymmetric differentia-
tion over to a set of n-point functions in the F-descrip-
tion, satisfying the first Maxwell equation in every
variable separately and, moreover, that each such F-
description set comes from some A-description set.

It should be noted that if a state w® in // is normalized
then every w” such that v =6,0" is also normalized;
if w¥ is real, w™* need not be real; however, an equiva-
lent real state wi _can immediately be obtained as
wi (@) =3[wA(a) +w™a*)], vacA*. The situation with
respect to positivity and Lorentz invariance is less
simple. At this point it is not clear whether for an
arbitrary positive, respectively Lorentz invariant state

Fin/l the inverse image (©;)'w¥ contains a positive,
respectively Lorentz invariant state w®, For the free
field one can derive explicitly the different gauges, as
will be done in a subsequent paper. In that case there
exist gauges corresponding with positive states on A4
and also gauges corresponding with Lorentz invariant
states, but there is no gauge having both properties.

It is expected that this is typical for the general case.

Relation between representations in F- and A-description

Let w® be a state in 47, positive, normalized and in
M. Let {4F, @, 17} the corresponding field theory ob-
tained as the GNS representation associated with w*.
Suppose w* to be a real state on A* in (8} w? and
{#*,9*, 1*} the corresponding field theory. In the
terminology adopted in this paper {#/4, Q% 1*} is a gauge
for {#/7,0F 17}, [1¥(aq) is the operator in HF repre-
senting a general element a in AF. The field operator
is then F(y)=117(y), vy $2; in the same way A(f)
=M%}, ¥fe §°. It should, furthermore, be noted that
the completion of the pre-Hilbert space A/* will not-be
considered in this paper. | Define 44 as the subspace of
#* consisting of all vectors 1*a)2”*, acAf. The
spaces #* and A7 are by construction distinct; there is,
however, a natural map from the subspace Hp,, onto HF.

Theorem 4: The relation I4(8,a)2* — N5 (a)2%, va
€AF, defines a linear isometric map W from A}, onto
¥ having the following properties:
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a. wWQ4=qFf,

b. WILAO,a)=T1Ta)W, wac A" [in particular WA(dy)
=F()W, vy 5.

c. The action of W on state vectors is consistent with
the action of € on state functionals in the following
sense: A vector Qf in A/} and its image Qf = WQ{ give
rise to functionals wi and wf on A4 and AF by the
formula w, Ha)= @54, 0 4@)f 4, vac AT 4. Then
one has wF _edwl

Proof:
(T7(@)QF, IF(5)27) = w¥(a*b) = (O *)a*b)
=w?((0,a*)(0,0) = (T*(0,a)24, 14(6,)24),

va,becAF.
So I*(0,a)2* =0 implies 17(¢)2¥ =0, and therefore W
is well defined. The isometry (WII*(©,a)Q*,
WI46,0)04) = (14(0,a)2%, 14(6b5)2*) follows imme-
diately The proof of a and b is obvious. For c one has:
€A% then 3b e 4% such that f =1140,5)Q*. Then

wila) = (M*(6,0)2%, T (a)14O,b)0%)

=w™(©,b)* a(®,b)), vacA™

Also
wf(e)= @7, TUF()QF) ={IFB)Q T, M (cNFBIRF)
= wF(b*ch) = (O w*)(b*ch) = w*((0,6)*(0,c X6 b))
=wiO,0) =8, wi)c), YceAr. QED

Covollary: The inner product in 4#/* is definite positive
on the subspace 4.

Because of this and the other properties of the

correspondence between 44 and #¥ one may call
the subspace of physical photon states, The null space
of W may be denoted as /%, it consists of all null-length
vectors in ;‘h. Because of the Schwartz inequality,

valid on /4 one has ¥ € /& <= (¥,¥")=0, W¥'c H}.
The space of null-photon states 44 defines an equiva-
lence relation for physical photon states: for ¥,, ¥,
SHiy U=V, == ¥, =V, c Hi <= W, =W¥,. The sub-
spaces A&, th and their properties are, of course,
well known from the Gupta-—Bleuler formalism for the
free field. In the general case such a structure is
postulated by Strocchi and Wightman. It must, however,
be emphasized that it appears in this formalism in quite
a general way as a rigorous consequence of the fact that
the electromagnetic field tensor satisfies the first
Maxwell equation as an operator equation.

There is also a natural correspondence between those
operators in £/* that represent the physical algebra 42,
and the operators in 47 that represent A%, The relation
14(6,a)— 1¥(a) defines in fact a *-homomorphism from

“‘(,4 t) onto MF(A4F) [because: 4O ,a) =0 = w*(8,(bac))
=0, ¥b,ce A" = wF(bac) =0, Wb,c € A" = 11%(a) =0.]
The operators in HA(%];“,,) may be called physical opera-
tors. They correspond to what are sometimes called
gauge invariant operators. One verifies easily that they
leave /{4 and /g invariant and have the property

(¥, 140, a)¥,) = (¥/,1*(8,a)¥,),

YV, e Ha, ¥, =8, j=1,2, acA". (11)
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An important special case occurs when it is possible
to choose a gauge such that /4 =/, in this case /=0,
W becomes a unitary transformation from /4 onto 4#¥,
which can be used to identify the two representation
spaces. This leads to a much simpler situation with a
single prehilbert space as representation space for the
operators A(f) and F(y). They are then connected by the
relation F(y) =A(dY), yye §*%, i.e., the relation F,,
=d,A,—3,A, is valid as an operator relation. An
example of such a situation is the Coulomb gauge for the
free field. The price to be paid for the simplification of
the description is well known in this case, Manifest
Lorentz covariance is lost, in the sense that the poten-
tial Au(x) no longer transforms as a vector under
Lorentz transformations; i.e., U(A)A, (x)UA)™
# (A7), " A, (Ax).

From the results in this section it is clear how
axiomatic field theory in terms of the field A ,(x) should
be formulated and how the usual axioms of the Wight-
man—Borchers formulation should be modified:

a. The vacuum state should be a continuous, real,
normalized linear functional w* on the Borchers algebra
A%, It has to satisfy a restricted positivity condition;
it should be positive on the subalgebra ;4;‘,,. (From this
the properties of the representation space, the special
subspaces, the equivalence relation between physical
vectors, etc., will follow, )

b. Lorentz invariance, locality and spectral proper-
ties should be required also only with respect to the
subalgebra 4.

The vacuum state will not be unique; two such states
will be physically equivalent when having the same
restriction to ;4;,4,,. They correspond then to different
gauges of a single physical theory. One may make a
choice from the available gauge by strengthening the
requirements for w*, e.g., into full positivity on 4% or
full Lorentz invariance on 4*: The crucial point is,
however, that in general these stronger requirements
cannot be fulfilled simultaneously.

4. MISCELLANEOUS FINAL REMARKS

The formalism given in this paper can be applied to
specific cases. It provides in particular a simple point
of view for the discussion of the free field. This has
many apparently very different realizations. Although
these gauges and their properties are, in a more or
less rigorous form, well known (the paper of Strocchi
and Wightman contains an admirable review), the situa-
tion as a whole can be much better understood in terms
of the algebraic formalism. The different gauges
appear there in a natural manner, and their properties
can be derived in a systematic and rigorous way. A de-
tailed discussion of this kind will be given in a sub-
sequent paper.

The situation of a classical Maxwell field can be easi-
ly accommodated in the algebraic scheme as a special,
rather trivial case. Let f,,(x) be a real-valued classi-
cal solution of Eq. (3) and «,(x) a potential correspond-
ing with £, (x) according to relation (5). (The functions
are supposed to be C* and to have a behavior at infinity
such that they define tempered distributions in R,.) One
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obtains real, normalized functionals w®'* on #¥'# by
defining

wF'A(e):l,

wF(d)l cre d)n): ffu.lul(xl) b fu_lu"(xn)

Xt v (x,) s pEata(x ) dPxy - - - dRy,

ns

wA(fy - 1) = faul(xl) ves Qu"(x") (12)

Xf”l(xl) RN F“"(xn)d4,¥1 .. .dqx”,

VZPu---,lP,.ES(Z), an°-':fn€5(3), n:1’2’3,""

The field operators in the representation spaces 44
associated with w4 commute. They act on the vacuum
states Q4 by scalar multiplication; e.g., A(H)Q*
=[a,(x)f*(x)d*x]Q*. The spaces /7 * are therefore
one-dimensional and can be identified by means of the
map W; finally (5) holds as an operator relation. Less
trivial is the description of stochastic classical
Maxwell fields. These are given by functionals w®'* for
which the n-point functions are symmetric. The field
operators will again commute; however, 44 will be
nontrivial. The w’'* can be considered to give infinite
dimensional moment problems. Under appropriate
conditions the GNS construction will provide solutions
in the form of infinite systems of classical random
variables on probability spaces.

The main theme of this paper is the investigation of
the consequences of Eq. (3) as an operator equation for
F,,, in particular, the existence of a field A, such that
(5) holds in some sense. It is obvious that the same
methods could be used to study a problem discussed by
Pohlmeyer'® from a different angle: Find, for a given
vector field operator ¢,(x) with 3,¢,-3,0,=0, a
scalar field ¢ such that ¢, =7, ¢. (In fact this problem
will play a role in the discussion of gauge transforma-
tions to be given in a subsequent paper. )

The formalism, as developed so far, contains only the
quantized Maxwell field. This means that it describes
rigorously situations in which the Maxwell field is free,
interacts with given external currents (classical or
quantized) or has some form of self-interaction. The
structure of the formalism depends, however, only on
the first Maxwell equation (3); the second equation (4),
characterizing the interaction, is not used. One may
therefore expect that a very similar structure will
emerge in an extended formalism in which the Maxwell
field appears coupled to a quantized Dirac spinor field
or a charged scalar field. The development of such an
extension is the main task in this or any other rigorous
approach to the formulation of quantum electrodynamics
in axiomatic field theory.
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Type D metrics in vacuum or with a special electromagnetic field are studied using the fact that they
admit a P{1,0) Killing spinor. It is shown that the & and & potentials of Ernst can be obtained in a

straightforward way for these types of metrics.

1. INTRODUCTION

Type D metrics have some interesting properties
which distinguish them among other types of metrics,
Of great interest is a result of Carter’ regarding sepa-
rability of variables of the Hamilton—Jacobi equations,
and the relation of this property with the existence of a
Killing tensor. As it was later shown by Walker and
Penrose,? Carter’s result is related to the fact that
vacuum D metrics, and the Kerr—Newman metric as
well, always admit a Killing spinor, from which a
Killing tensor can be constructed. This result was later
generalized by Hughston ef al.?

Some properties of Killing spinors of a general type
were studied by the present authors,* the results being
valid either in a real or a complex Riemannian space.
Our interest in complex spaces was originated by recent
developments in the theory of “heavens®7"” and “hyper-
heavens.®” Our study® of spinorial Killing structures was
a starting point for the recent progress of Ernst and
one of us® in the theory of complex ¢ potentials, 1% 3
technique which has been the basis for obtaining some
new solutions,'®!® The main idea in Ref, 9 was to inte-
grate direct square products of members of a D(3, 3)
Killing structure, * thereby obtaining the potentials.
Whether similar results may be obtained from other
types of Killing structures is an interesting problem;
the objective of this paper is to test this idea for the
case of a D(1,0) Killing structure in vacuum (with possi-
ble cosmological constant A #0), and with an electro-
magnetic field aligned with respect to the curvature,

The basic idea is the following. Let h gz be a D(1,0)
Killing spinor, that is, it satisfies the equation
Viahso, =0 1.1

(the formalism and notation of Ref, 7 will be used
throughout this paper). Then, in general, one hag*!*

Vahpc=t€4K8, , (1.2a)
VAKE =4C ¥ ABn,,, +e, 148 +eAB, (1.2b)
V;ézé é = zcgéé)}KA); + SCAR(A,: K]C;)

_ 4h(ARVN(ACN)RBC) - %{thVP(CCNSAP

— 45V R + 1K, P4, (1.2¢)
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where
Las=Cap  hpg + (R/6)hyp,

Capcp and C,p 35 are the spinorial images of the Weyl
tensor and the traceless Ricci tensor, respectively,
and R is the Ricci scalar. In the case of a real V, with
signature (+++ =), {45 is the complex conjugate of I,
if the vector K, is real. In the general case of a com-~
plex V,, the Killing structure is closed with respect to
differentiation through Eqs. (1.2) and (1.3), without
postulating the existence of a D(0, 1) Killing spinor
h,5—which, of course, is present in the real case.

(1.3)

The integrability condition of (1,2a) gives*

C¥ anchpyn =0, (1.4)

which is a very strong constraint: The metric must be
of type D—if det(h,,) #0— or type N—if det(h,;)=0—
(see Sommers!®), In the second case, it further follows
that the metric must be that of a plane wave.!s In the
following we shall only consider the case when the met-
ric is of type D. A direct consequence of (1.4) is that
the conformal curvature C 5., must be proportional to

h(ABhCD)‘

2. £ POTENTIALS IN VACUUM

In D-vacuum C,g;5=0 and R =~ 4 (cosmological
constant), and Walker and Penrose? have shown that a
nontrivial D(1,0) Killing spinor always exists. Further-
more, from such a Killing spinor, k,5, a vector K,
can be constructed through our Eq. (1.2a) and, as
Sommers'® has shown, K,; is a Killing vector. This
can be seen immediately by specializing Eq. (1.2b) to
the vacuum case

VAKE =€ 45048 + € 48, ,. 2.1
This is precisely the definition of a Killing vector in
spinorial language (see Ref, 4). Furthermore, if we
define

hpght9= - 2y72, (2.2)
then?®

lap =~ 2243+ pg, (2.3)

Cascop=9’Raphcpy 2.4)

this last relation being a consequence of Bianchi iden-
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tities. Notice that, in general, K,; is a complex
vector.

By direct differentiation of Eq. (2.2), and use of
Egs. (1.2a), (2.1), and (2, 3), one obtains

hayKYA =V fy2 2.5)
—> KA = — 27, VHAY, 2.6)
and this last equation gives Kﬁ in an explicit form
assuming that 2, is known. Following Ernst and
Plebafiski, * we now define a vector

GA:=2K%4, @.7)
which turns out to be the gradient of an £ potential®:

GA=vAE. (2.8)
Using (2.1), (2.3), and (2.6) it easily follows that

& =%y ~ (40/3)y% + const. 2.9)

One can substitute this into Ernst’s equation® or,
alternatively, take directly the derivative of Eq. (2.5)
and, using formulas (1.2), obtain the master equation

(VAVS - )y =* (2.10)

which is a wavelike nonlinear equation. The function y
has a direct geometrical meaning since, according to
Eq. (2.4), the curvature invariant C** is proportional
to y°. For instance, for the seven parameter metric
of Plebafiski and Demiariski (see, e.g., Plebafiski'®)
specialized to the vacuum case we find

ptaq
1-ipq
in the notation of Ref. 16 (the proportionality constant

is irrelevant since any Killing spinor is defined with
precision up to a multiplicative constant),

(2.11)

zpoc

We note that the above analysis, which applies to real
D metrics, is also valid in a complex V,. The differ-
ence is that condition (1.4) is less restrictive: The
space—time must be of type D®anything.

3. £ AND ¢ POTENTIALS IN ELECTROVACUUM

Let us now consider an electrovac structure such that
the two (different) eigenvectors of the electromagnetic
field are parallel to the two Debever—Penrose vectors
of the type D metric. Let the Maxwell field be

fan =R ag, 3.1)
while the curvature is given by

Cagcp=9Phashcn)y, (3.2a)

Cap is=—8fanfan, (3.2b)

and we postulate that &,z is the Killing spinor intro-
duced in Sec. 1. Then, the Maxwell equations without
currents,

VA =0 =V, A, (3.3)
imply that
VAfac= -3 heaphen, K24 (3.4)
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and it follows from the Bianchi identities that

VA(py) + 1273 K4 =0. (3.5)

A basic result of Hughston ef «#1.° is that nontrivial
Einstein—Maxwell fields such as the one described above
do exist (the Kerr—Newman metric is an example),

Now, the vector K, defined by Eq. (1.2a) is also a
Killing vector in this case; this is due to the fact that
the first term on the right-hand side of Eq. (1.2b) van-
ishes for a Maxwell field such as the one described
above. The analog of Eq. (2. 3) in this case is

Lap = (=309 = S\ ap,
and Eqs. (2.2) and (2.4) are still valid.

(3.6)

Following Ernst and Plebafiski, ® we again define a
vector Gi as in Eq. (2.7), and two additional vectors,
Fﬁ and F4, which are the gradients of two potentials,
¢ and &, namely

—4KNAf, = F4=V4e, (3.7a)
4K, (VA= F A=vip. (3. Tb)

From Eqgs. (2.2), (3.1), (2.6), and (3.5) it follows
immediately that, in our case,

F,A—vA@y), (3.8a)

FA=ViGey™), (3.8b)
which identifies the @ and ¢ potentials. Now, it can be
shown that®

GA=VAE+20V4a, (3.9)
which is the generalization of Eq. (2.8). Using the
values of ¢ and ¢ as implied by Egs. (3.8), it follows
that

& = -8y 2+ (const)d + const. (3.10)
Furthermore, f defined by

Frm— SKY KN (3.11)
is, according to Eq. (2.6),

F=2 (O, (3.12)

and therefore Eqs. (3.22) and (3.23) of Ref. 9 reduce to
the single equation

(V959 - 40y =§ i, (5.13)
According to equation (3.10), when A =0, the ¢ potential
can be made zero. What happens, actually, is that the
nontrivial potential in this case is &, which was null in
the vacuum case. The relevant function is y, which
satisfies the wavelike equation (3.13).

For the seven parameter metric, '® which is of the type
studied in this section, the ¢ and ¢ functions are

po 2T (3.14a)
1-ipq’
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ptq\° . 2 p+q

again in the notation of Ref. 16,

The above analysis is also valid in a complex V,,
where f35 is not necessarily the complex conjugate of
Jfap; notice that in no moment have we assumed anything
about f;5, except that it satisfies Maxwell equations.
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ptq\° . 2 p+q

again in the notation of Ref. 16,

The above analysis is also valid in a complex V,,
where f35 is not necessarily the complex conjugate of
Jfap; notice that in no moment have we assumed anything
about f;5, except that it satisfies Maxwell equations.
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